1 - 5 of 5

Biological Lectures Delivered at the Marine Biological Laboratory in Woods Hole

<i>Biological Lectures Delivered at the Marine Biological Laboratory in Woods Hole</i>

The Marine Biological Laboratory in Woods Hole, Massachusetts, began in 1888 with one building housing researchers upstairs and students in a shared lab and lecture space downstairs. For the first two years, instruction took the form of general lectures covering a range of topics in zoology. In addition, the trustees offered some public lectures in Boston to raise funds for the lab.

In 1890 the lab began a new tradition that has continued every year since. They began a series of evening lectures intended to be accessible to a wide audience of those interested in biology. Eventually these became known as the Friday Evening Lectures, and since the opening of the auditorium in the Lillie Building in 1924 (named after second Director Frank Rattray Lillie) the lectures have been held there. Every Friday evening during the summer season, the community of scientists, students, and members of the public interested in science stream into the auditorium for their weekly lecture, then move to the reception held afterward. These lectures are a high point of the MBL’s summer of science.

Throughout the 1890s Charles Otis Whitman, as the MBL’s first Director, persuaded the lecturers to write up their lectures and publish them. He organized the lectures of 1890 and then 1893–1899 into volumes that appeared as a serial that both showed the larger world what the MBL offered and brought leading scientists to the lab to participate in the lectures and their publications.

The Biological Lectures Delivered at the Marine Biological Laboratory in Woods Holl provides a useful insight into what were thought to be the driving questions of the day and what were seen as productive ways of approaching them. Some years reveal a general distribution of topics, while other years are much more focused.

For an introduction to the lectures, see Jane Maienschein’s introduction to Defining Biology. This volume offers a sampling of the lectures and also a complete list of lectures published during the 1890s. The MBL Annual Reports provide a list of every year’s lecturers and demonstrate the shifts in emphasis over time, as well as changing trends in biology.

Sources

  1. Maienschein, Jane, ed. Defining Biology: Lectures from the 1890s. Cambridge: Harvard University Press, 1986.
  2. Marine Biological Laboratory Annual Reports: available in the MBL Biological Bulletin Vols. 17 and 21–105 at http://www.archive.org/details/biologicalbullet01mari and beginning with 2004 at http://www.mbl.edu/governance/gov_annual_report.html.

The Marine Biological Laboratory in Woods Hole, Massachusetts, began in 1888 with one building housing researchers upstairs and students in a shared lab and lecture space downstairs. For the first two years, instruction took the form of general lectures covering a range of topics in zoology. In addition, the trustees offered some public lectures in Boston to raise funds for the lab.

Created: 2008-10-24

The Biological Bulletin

The Biological Bulletin

From 1886 to 1889 Charles Otis Whitman was director of the Allis Lake Laboratory in Milwaukee, Wisconsin. The lab was established by Edward Phelps Allis, Jr. to provide a place for biological research separate from a university setting and a place where an independent scholar like Allis himself could work. Allis had hired Whitman as an instructor to establish the lab, direct it, and lead a research program there. The lab lasted for eight years, attracted several researchers, and the papers that came out of the lab included a focus on embryology. This raised the question of where to publish the work since there were few life science journals being published in the United States , which led Whitman to propose a new journal.

With Allis’s support, Whitman started the Journal of Morphology in 1897 for long, almost monographic articles complete with elaborate illustrations. In addition, Whitman and his student William Morton Wheeler (who had also worked at the Allis Lake Laboratory) started a second journal for shorter articles and reports that could quickly appear in print. This was seen as a companion for the Journal of Morphology and was intended to embrace the entire field of animal biology. At first they called it the Zöological Bulletin, but after the first two years of publication in 1898 and 1899, the title changed to The Biological Bulletin. This also fit with the fact that the journal started out independently and then in 1890 became affiliated informally with the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, of which Whitman served as first director starting in 1888. The MBL also published its series of evening lectures throughout the 1890s, as The Biological Lectures Delivered at the Marine Biological Laboratory in Woods Holl. Whitman encouraged MBL investigators to publish in the first two journals and the lecturers to contribute their lectures to the third. Very quickly, Whitman had helped the United States establish itself as a place where serious scientific research was done in the life sciences.

Most new scientific journals start with an introduction, a statement of mission, or something that tells the reader and potential subscriber or submission author what this publication is about. Not The Biological Bulletin. It began its first issue as The Zöological Bulletin in 1897 (The Biological Bulletin in 1899) with an article by Allis himself. Other investigators from Allis Lake Lab and from the MBL submitted their work, including women scientists who were generally rare among life science researchers.

By 1899 Whitman had moved to Clark University and had realized that the journal needed a broader base. The first issue from the MBL and under the new Biological Bulletin name opened with Maynard M. Metcalf on “Some Relations between Nervous Tissue and Glandular Tissue in the Tunicata.” The issue includes articles by T. H. Morgan, Anne Moore, Garry de N. Hough, and C. W. Hargitt. The front matter says only the title of the journal and that it was edited by the Director and Members of the Staff of the Marine Biological Laboratory, Woods Holl, Massachusetts.

This continued for two years, but in 1900 Whitman and the Ginn Company in Boston that was publishing the journal had disagreements, and finding funding for the journal was a challenge. As a result, the 1900 volume had only three spring issues and 1901 came out only midway through the year. Issues resumed full force in 1902 with the New Era Publishing Company in Lancaster, Pennsylvania (which later became Lancaster Press). This was the real solid start of the journal, with the excellent administrator and Assistant Director of the Marine Biological Laboratory Frank R. Lillie serving as Managing Editor and an appointed editorial board comprised of Whitman, Edwin Grant Conklin, Jacques Loeb, Thomas Hunt Morgan, William Morton Wheeler, and Edmund Beecher Wilson. Lillie remained as managing editor for nearly a quarter of a century and placed the journal, as he did the MBL itself, on a solid intellectual and economic foundation.

In starting again in a more formal way, the MBL staff recognized the need to explain what The Biological Bulletin was meant to be. It was meant to offer an American version of the German Biologisches Centralblatt or Anatomischer Anzeiger, they said. And it was up to American scientists to join the editors and make the enterprise successful.

The journal has remained strong through many different editors and changes in MBL administration, in large part because of a clear and coherent mission that is broad enough and yet focused enough to have remained compelling for more than a century. It has been a challenge at times, when specialty publications have become the norm, to define a valuable niche for a publication that includes all of biology in its mission. The articles have been largely reports of experimental work, often but not always with marine organisms, often concentrating on the areas in which the MBL itself excels, such as neurobiology, development, cell biology, and physiology.

The journal has helped build the MBL library into one of the world’s best biological research centers, since from the beginning, the editors swapped with many other publications and thereby helped all the collections grow. Today, MBL Corporation members can choose to receive a copy of the journal with their membership, and as of 2008, all past issues are now available through open access online.

Sources

  1. Clapp, Pamela. “The History of The Biological Bulletin.” The Biological Bulletin 174 (1988): 1–3.
  2. Marine Biological Laboratory Annual Reports: available in the MBL The Biological Bulletin Vols. 17 and 21–105 at http://www.archive.org/details/biologicalbullet01mari and beginning with 2004 at http://www.mbl.edu/governance/gov_annual_report.html.

From 1886 to 1889 Charles Otis Whitman was director of the Allis Lake Laboratory in Milwaukee, Wisconsin. The lab was established by Edward Phelps Allis, Jr. to provide a place for biological research separate from a university setting and a place where an independent scholar like Allis himself could work. Allis had hired Whitman as an instructor to establish the lab, direct it, and lead a research program there. The lab lasted for eight years, attracted several researchers, and the papers that came out of the lab included a focus on embryology.

Created: 2008-10-24

The Marine Biological Laboratory

The Marine Biological Laboratory (MBL) was founded in 1888 in Woods Hole, Massachusetts. Woods Hole was already the site for the government’s US Fish Commission Laboratory directed by Spencer Fullerton Baird, and it seemed like the obvious place to add an independent research laboratory that would draw individual scientific investigators along with students and instructors for courses. From the beginning, the lab had the dual mission of teaching and research, and from the beginning leading biologists have found their way to this small village on the “heel” tip of Cape Cod.

Supported by trustees who were largely in the Boston area, the lab opened its doors that first year with one small wooden building and great enthusiasm. Advertising was largely word of mouth since the building was still being constructed and the supplies had not yet arrived up to the last minute. Nonetheless, eight students and seven investigators made up the pioneer group in a six week session with a budget of just over $10,000 to build and equip the new laboratory building. With a focus on marine life, Balfour H. Van Vleck served as first instructor for a general zoology course.

The second year brought considerable expansion to six instructors and the addition of botany. After that, the lab was on its way to becoming an international presence in marine biology and eventually in certain defined areas of biology generally. From the beginning, embryology was one of the primary focus areas of the lab, and it has remained so throughout the MBL’s 120-plus years. The leadership of the laboratory had a strong embryological interest from the beginning, as did the individual investigators and trustees. Especially when the work was experimental, the emphasis was sometimes labeled “physiology” instead of “experimental embryology” to get at fundamental processes of development.

Charles Otis Whitman served as first director of the lab. He had directed the small private Allis Lake Laboratory near Milwaukee, Wisconsin, then directed the biology program at Clark University, and then the biology program at the University of Chicago. Whitman was an able administrator who inspired people intellectually, and he somehow managed to make things work even when money was short. This is probably due in large part to the talents of Frank Rattray Lillie, who followed Whitman at Chicago and at the MBL where he became Assistant Director and then second Director. Where Whitman left financial matters to hope, saying things like “well, what is money for?,” Lillie was an astute manager with support from his wealthy brother-in-law Charles Crane and other individuals and foundations. Whitman and Lillie made a fine team, and they attracted a board of trustees that included top research biologists and also loyal donors. This has remained true, as the MBL has developed a Corporation of research scientists who pay a membership to be part of the group, plus installed a governing Board of Trustees to oversee operations. Despite some challenging times and some tempting take-over offers, the lab has always remained independent; research and instruction both have increasingly come to rely on federal grants and private foundations but the lab has resisted various attempts to make it an arm of a university, the government, or other organizations.

In 1890 the lab started a series of evening lectures that became known as the Friday Evening Lectures. The goals of offering these lectures and advertising them widely to the public were twofold: first to take science to the larger public and increase interest in science, and second to bring specialists together to learn from each other. Lecturers were instructed to make their talks accessible to beginners as well as of value to senior researchers. These were not intended to be courses, but rather to supplement the systematic organized instruction of the courses. For the years 1890–1899, the lectures were published as the Biological Lectures Delivered at the Marine Biological Laboratory in Woods Holl.

Courses included zoology, of course, and botany starting in the second year. In addition, Jacques Loeb added physiology as a focus. By 1893 the lab announced instruction in zoology, botany, embryology, physiology, and microscopical technique. In particular, Whitman was directing a course of lectures in embryology, working with Lillie. The Embryology Course has remained a core part of the MBL instructional offerings since 1893, with additional specialized training programs at different times with different emphases.

From the beginning, individuals or institutions could rent lab space and carry out investigations. Since embryological research drew heavily on comparative studies of marine development, it made sense for universities to send their embryologists to the seashore to do work. As Philip Pauly noted, the combination of doing one’s research while summering at the seashore was a tremendously attractive option. The MBL has always been a place for the world’s top embryologists to gather in the labs, in lectures, on sailing picnics, and with their families at the beaches. Annual Reports show the range of work done at the MBL, and since 1897 the publication of the Biological Bulletin has added an outlet for research carried out by MBL researchers and others.

For the early decades of the lab, embryological work centered on descriptive and comparative studies, especially cell lineage work that reported the details of each cell division for as long as it could be followed in each organism. Different researchers took up different organisms and compared their results, developing concepts of determinative and regulatory development depending on how much the cell divisions could respond to changing environmental conditions. Edmund Beecher Wilson placed cells at the center of developmental research, with his masterful The Cell in Development and Inheritance (1896; second edition 1900; much revised third edition 1925). Then the early twentieth-century brought experimental embryology, and by the 1950s and 1960s embryology embraced genetics and became known as developmental biology. Leaders such as James Ebert and Eric Davidson led the lab and also the Embryology Course in the direction of studying differentiation through processes like organogenesis or genetic regulation of development, for example.

While other places often gave up the embryos, the MBL has retained an interest not just in the cells and molecules but also in the developing organisms, which exist in specific environments and depend on complex systems of interacting cell signals and environmental cues. The Embryology Course and the investigation carried out in labs has changed over the 120-plus years at the MBL, but the MBL has played an important role in securing the central place of embryos and the value of comparative study of developmental processes. Perhaps being near the organisms and being able to have them delivered directly from the collectors in the Supply Department makes them more real and the interactions of the parts more salient.

Complex systems, modeling, molecules, and physiological systems all join together in the study of marine and related material at the Marine Biological Laboratory. Researchers have gone out to collect their specimens and have kept them alive in the on-demand seawater running through designated pipes. They have studied normal development, pathologies, and experimental conditions. Generation, regeneration, and new generation are on the research agenda. As the Annual Reports show starting with the very first years, the MBL has been a place for leading investigation and instruction in several areas including embryology, neurobiology, and physiology. Over the years, this has placed the MBL in a solid position to develop such diverse promising areas of research as molecular genetics, neuroembryology, and regenerative medicine.

View a timeline of the MBL here.

Sources

  1. Lillie, Frank R. The Woods Hole Marine Biological Laboratory. Chicago: the University of Chicago Press, 1944. Reprinted as a Supplement to The Biological Bulletin Vol. 174 (1988) available at http://www.biodiversitylibrary.org/item/17426.
  2. Maienschein, Jane. 100 Years Exploring Life, 1888–1988. Boston: Jones and Bartlett Publishers, 1989.
  3. Marine Biological Laboratory Annual Reports: available in the MBL Biological Bulletin Vols. 17 and 21–105 at ,http://www.archive.org/details/biologicalbullet01mari and beginning with 2004 at http://www.mbl.edu/governance/gov_annual_report.html.
  4. Marine Biological Laboratory. Symposium Supplement to The Biological Bulletin Vol. 168 (1985): 1–204.
  5. Pauly, Philip. “Summer Resort and Scientific Discipline: Woods Hole and the Structure of American Biology, 1882–1925.” In The American Development of Biology, eds. Ronald Rainger, Keith R. Benson, and Jane Maienschein, 121–150., Philadelphia: University of Pennsylvania Press, 1988.

The Marine Biological Laboratory (MBL) was founded in 1888 in Woods Hole, Massachusetts. Woods Hole was already the site for the government 's US Fish Commission Laboratory directed by Spencer Fullerton Baird, and it seemed like the obvious place to add an independent research laboratory that would draw individual scientific investigators along with students and instructors for courses.

Created: 2008-10-24

Ernest Everett Just (1883-1941)

Ernest Everett Just

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the “fertilizing” theory of Frank R. Lillie and served as an antagonist to Jacques Loeb’s work with artificial parthenogenesis. Just’s many experiments with marine invertebrates showed that the egg surface, or ectoplasm, plays an important role in the fertilization and development of eggs.

Just was born in Charleston, South Carolina, on 14 August 1883 to Charles Frazier Just Jr. and Mary Matthew Just. His father died in 1887 and soon after the Just family moved to James Island, off the coast of South Carolina. His early education consisted of attending the small school that his mother founded and directed. Just left James Island at the age of twelve to attend the Colored Normal Industrial Agricultural and Mechanics College at Orangeburg (now South Carolina State College). In 1899 Just graduated with a Licentiate of Instruction, meaning that he was certified to teach in any black school in South Carolina. He was only fifteen years old.

Teaching did not appeal to the teenager so he traveled north, picking up odd jobs along the way until he reached Kimball Union Academy in Meriden, New Hampshire. Just finished a classical course of study in three years, during which time his mother died. The young college graduate was advised by friends and teachers to attend Dartmouth College which he decided to do. At Dartmouth, Just studied biology, history, literature, and the classics. He graduated from Dartmouth in 1907, the only “magna cum laude” in his class, with an AB degree and joined the English faculty at Howard University, Washington, DC in the fall of that same year. He was asked to take over the biology department and teach physiology in 1910, in addition to his English teaching duties. Soon after, Just became the first head of the new Department of Zoology and gave up teaching English courses.

Through a Dartmouth contact, Just communicated with Lillie at the University of Chicago about a post-graduate degree in biology. Lillie directed Just to begin research in 1909 at Woods Hole and to take courses at the University of Chicago. Work at the marine station quickly turned into a research assistantship, working side-by-side with Lillie. All of this was done in addition to maintaining a full-time teaching position at Howard. After obtaining his PhD, Just returned annually to Woods Hole as an independent researcher.

Just focused his interests on marine invertebrate eggs, both in the laboratory and in their natural setting. Because of his tacit knowledge of how marine invertebrates reproduced in oceans and estuaries, Just was able to closely match his laboratory environment to that of the organism’s natural environment. In 1912, Just’s first paper, “The Relation of the First Cleavage Plane to the Entrance Point of the Sperm.” was published in the Biological Bulletin. Just showed that eggs of the marine worm (Nereis) cleave in different planes depending on the sperm’s point of entry. To Just, the egg’s surface was an important and robust factor in the fertilization process. By showing that sperm had an equal probability of entering the egg at any point on the egg’s surface, and that the direction of cleavage depended on the arbitrary point of entry of sperm, and not some predetermined cleavage plane, Just made a dent in preformationist theory. It was also during this time that he married Ethel Highwarden in 1912 and met Jacques Loeb while Loeb was at the Rockefeller Institute for Medical Research. Similar research interests and Loeb’s stand on social equality made the two embryologists fast, but not longstanding friends. In 1915 Just was the first to receive the Spingarn Medal, presented annually to the African-American who performs the greatest service to his or her race. This was followed by the University of Chicago awarding Just his PhD degree in experimental embryology in 1916.

During 1919 and 1920, Just published four papers in the Biological Bulletin, all focusing on his work with the sand dollar Echinarachnius parma. In one set of experiments Just measured the elevation of the egg membrane at sperm contact and the time that it took for the membrane to be penetrated by a sperm. He observed that the sperm was pulled into the egg rather than the commonly held view that it actively bored its way into the egg. Just also documented a “wave of instability” that moved from the sperm’s entry point to the opposite side of the egg. Since then, embryologists have proven that such an instability wave is a wave of cortical granule exocytosis that forms the fertilization envelope. Just also saw that the wave was associated with an immediate blocking of any further sperm penetrability of the egg.

In 1920, while continuing to teach at Howard, Just obtained a ten-year research fellowship from Julius Rosenwald through the National Research Council. He wasted no time in returning to his work at Woods Hole where he continued to study the process of fertilization with results that strengthened Lillie’s work and questioned Loeb’s idea of “superficial cytolysis.” According to Loeb’s studies, egg development could be initiated by exposing eggs to butyric acid. Development was then immediately followed by the release of lysine, Loeb’s cytolytic agent, to break down the egg cortex. Just showed that putting eggs in butyric acid for a short period of time actually slowed cytolysis rather than sped it up. Just was able to prove that the cytolytic effect of the butyric acid was due to overexposure of the eggs to the acid and nothing more. He went even further in dismissing Loeb’s experimental findings on artificial parthenogenesis, attacking Loeb’s method of record-keeping and his apparent failure to maintain experimental conditions to mimic his experimental organisms’ natural environments.

The friendship that Just and Loeb had forged together at Woods Hole quickly vanished. Their disagreements played out for many years, with Loeb providing negative evaluations of Just to the Rockefeller Institute and the Carnegie Foundation. Every time Just tried to obtain grant money, Loeb’s evaluations seemed to rise up and quell any grant award.

In 1929 Just made his first trip to Europe and worked at Anton Dohrn’s Stazione Zoologica in Naples. For six months he experimented with sea urchins (Paracentrotus lividus and Echinus microtuberculatus) to see how these organisms develop and to continue testing Lillie’s “fertilizin” theory of fertilization. Around 1906 Lillie had hypothesized that eggs release a substance that he coined fertilizin. Upon contact with spermatozoa, said Lillie, fertilizin causes sperm to attach to it. Lillie believed that fertilizin molecules served as receptors on the egg’s surface. With receptors for egg and sperm surfaces, the molecule helped to “agglutinate” egg and sperm together.

In 1930 Just was invited to the Kaiser Wilhelm Institute in Berlin where he continued his studies of the ectoplasm with other species, including Amoeba. Just strove to show the importance of ectoplasm in initiation of development. While in Europe he published three articles on the role of ectoplasm: “ Die Rolle des kortikalen Cytoplasmas bei vitalen Erscheinungen” (“The Role of Cortical Cytoplasmin Vital Phenomena”) in Naturwissenschaften (1931) and “On Origin of Mutations” (1932) and “Cortical Cytoplasm and Evolution” (1933), both published in the American Naturalist. All three articles pointed to Just’s view that ectoplasm is necessary for fertilization to occur.

With little hope of ever being able to teach anywhere but a black college, and his continued failure to secure research funds, Just went to Europe in 1938 with the intent of leaving Howard and finishing out his research career on a new continent. In 1939 he published two books: Basic Methods for Experiments on Eggs of Marine Animals and The Biology of the Cell Surface. Both books reflected Just’s holistic view of eggs and embryos: that is, eggs are to be taken seriously in their own right rather than seen simply as tools to manipulate in order to prove a theory. While Just’s experiments may have been simple, he was an intense perfectionist when it came to laboratory procedure. His ability to keep laboratory environments similar to actual marine environments aided in the integrity of his research. It also led to his life-long criticism of experimental embryologists who failed to appreciate his tacit knowledge about inducing marine invertebrate reproduction. To Just, too many embryologists were busy taking eggs out of natural environments and subjecting them to unnatural manipulations while ignoring the importance of the eggs’ environment as an important factor in development. In The Biology of the Cell Surface, Just also continued his attack on the role of genes in development. He remained adamant that cytoplasm was the key to development and not the nucleus. This countered the growing enthusiasm by geneticists who held the idea that the nucleus controlled fertilization and development.

The Nazi invasion of France in 1940 forced Just to return to the US and Howard University, one of the few institutions at the time that would hire a black scientist. His attempt to recareer again in the United States was short-lived however. Just died of pancreatic cancer on 27 October 1941.

Sources

  1. Byrnes, Malcolm W. “Ernest Everett Just.” New Dictionary of Scientific Biography 4: 66– 70.
  2. Byrnes, Malcolm W., and William R. Eckberg. “Ernest Everett Just (1883-1941): An Early Ecological Developmental Biologist,” Developmental Biology 296 (2006): 1– 11.
  3. Gilbert, Scott F. “Cellular Politics: Ernest Everett Just, Richard B. Goldschmidt, and the Attempt to Reconcile Embryology and Genetics.” In The American Development of Biology, eds. Ronald Rainger, Keith R. Benson, and Jane Maienschein, 311–42. Philadelphia, PA: University of Pennsylvania Press, 1988.
  4. Gould, Stephen Jay. “Just in the Middle: A Solution to the Mechanist-Vitalist Controversy.” In The Flamingo’s Smile: Reflections in Natural History, 337-391. New York: W. W. Norton, 1985.
  5. Just, Ernest E., “The Relation of the First Cleavage Plane at the Entrance Point of the Sperm,” Biological Bulletin 22 (1912): 239–52.
  6. Lillie, Frank R. “Obituary of Ernest Everett,” Science 95 (1942): 10–11.
  7. Manning, Kenneth J. Black Apollo of Science: The Life of Ernest Everett Just. New York: Oxford University Press, 1983.
  8. Pauly, Philip J. Controlling Life: Jacques Loeb and the Engineering Ideal in Biology. New York: Oxford University Press, 1987.

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served as an antagonist to Jacques Loeb's work with artificial parthenogenesis.

Created: 2010-06-16

James David Ebert (1921-2001)

James David Ebert (1921-2001)

James David Ebert studied the developmental processes of chicks and of viruses in the US during the twentieth century. He also helped build and grow many research institutions, such as the Department of Embryology in the Carnegie Institution of Washington in Baltimore, Maryland and the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts. When few biologists studied the biochemistry of embryos, Ebert built programs and courses around the foci of biochemistry and genetics, especially with regards to embryology. He eventually directed the MBL's Embryology Course, and later, the MBL itself.

Ebert was born on 11 December 1921 in the town of Bentleyville, Pennsylvania. He attended public schools while growing up and then graduated from Washington and Jefferson College in Washington, Pennsylvania in 1942. Not long after graduation he joined the United States Navy and eventually became a lieutenant. Ebert was stationed on a destroyer in the Pacific Ocean that was attacked by a kamikaze pilot. The destroyer sank and Ebert spent twenty-four hours in the ocean until being rescued. Afterwards, as a biologist, Ebert befriended and trained several Japanese developmental biologists.

In 1946 Ebert began working towards his PhD in developmental biology under the instruction of Benjamin Willier at the Johns Hopkins University in Baltimore, Maryland. In the same year he married Alma Goodwin, who was a Women Accepted for Volunteer Emergency during the war. Ebert received his PhD in 1950 and immediately became a member of the faculty at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. After one year at MIT, Ebert moved to Indiana University in Bloomington, Indiana. Ebert became an associate professor of zoology by 1955, and he had started a program of experimental embryology. He studied chick embryos and the processes by which the protein make-up of the embryos changed throughout development.

Six years after receiving his PhD, Ebert became the director of the Carnegie Institution of Washington's Department of Embryology, in Baltimore, Maryland. Prior to Ebert's term as director, the department had had three other directors. The Institution's president, Caryl Haskins, had contemplated closing the department and starting something new. However, with some persuasion from Willier, Haskins spoke with Ebert and decided to give him the opportunity to run the department. Ebert and Haskins agreed that the department needed to focus on the study of genes and their regulation as well as the ways cells influence one another. Haskins said that Ebert's youth and enthusiastic personality made Haskins believe that Ebert would provide a fresh perspective to the department.

Ebert argued that it was his job to recognize and to recruit new talent and then support them in their work. He stressed the use of biochemistry and genetics, which in the 1960s blended together to form molecular biology. During this time, Ebert started to study the relationship between muscle cell differentiation and the propensity to infection in the Rous sarcoma virus.

While still director of the Carnegie embryology department, in 1970 Ebert also became the president and nonresident director of the Marine Biological Laboratory (MBL) at Woods Hole. At the MBL he researched, with Keiko Ozato, the response of murine lymphocytes to mitogens.

In 1977 Ebert ended his term at the Carnegie Department of Embryology, but he remained the director of the MBL. From 1978 until 1987, Ebert lived in Washington, D.C., and he was the president of the whole Carnegie Institution of Washington. As the institution's president, he made the decision to help build a large optical telescope in Chile at Las Campanas Observatory, and he worked towards the creation of a common campus for both Carnegie departments in Washington.

Ebert remained involved with scientific institutions for the rest of his life. When leaving one institution, he found another one to join. He retired from the Carnegie Institution in 1987 and became the president of the Chesapeake Bay Institute at the Johns Hopkins University, where he was a professor of biology for six years. Ebert was elected to many societies including the National Academy of Sciences, the American Philosophical Society, the American Academy of Arts and Sciences, and the Institute of Medicine. He was the vice president of the National Academy of Sciences from 1981 through 1993 and he also chaired its Government-University-Industry Research Roundtable from 1987 through 1993. His colleagues elected him as president of the Society for the Study of Development and Growth, the American Institute of Biological Sciences, and the American Society of Zoologists.

In retirement, Ebert and his wife Alma spent half of each year in Woods Hole and at the MBL. Ebert and Alma died on 22 May 2001 in an automobile accident while en route to Woods Hole.

Sources

  1. DeHaan, Robert L., and James D. Ebert. "Morphogenesis." Annual Review of Physiology 26 (1964): 15–46.
  2. Ebert, James D. "An analysis of the effects of anti-organ sera on the development, in vitro, of the early chick blastoderm." Journal of Experimental Zoology 115 (1950): 351–77.
  3. Ebert, James D. "An analysis of the synthesis and distribution of the contractile protein, myosin, in the development of the heart." Proceedings of the National Academy of Sciences 39 (1953): 333–44.
  4. Ebert, James D. "The effects of chorioallantoic transplants of adult chicken tissues on homologous tissues of the host chick embryo." Proceedings of the National Academy of Sciences 40 (1954): 337–47.
  5. Ebert, James D. "The formation of muscle and muscle-like elements in the chorioallantoic membrane following inoculation of a mixture of cardiac microsomes and Rous sarcoma virus." Journal of Experimental Zoology 142 (1959): 587–621.
  6. Ebert, James D., and Ian M. Sussex. Interacting Systems in Development. New York: Holt, Rinehart and Winston, 1970.
  7. Ebert, James D., and Fred H. Wilt. "Animal Viruses and Embryos." The Quarterly Review of Biology 35 (1960): 261–312.
  8. Obituaries. "Jim and Alma Ebert." Marine Biological Laboratory. http://www.mbl.edu/news/obit/obit_ebert.html (Accessed December 8, 2007).
  9. Ozato, Keiko, William H. Adler, and James D. Ebert. "Synergism of bacterial lipopolysaccharides and concanavalin A in the activation of thymic lymphocytes." Cellular Immunology 17 (1975): 532–41.
  10. Singer, Maxine. "James David Ebert." Proceedings of the American Philosophical Society 148 (2004): 124–27.

James David Ebert studied the developmental processes of chicks and of viruses in the US during the twentieth century. He also helped build and grow many research institutions, such as the Department of Embryology in the Carnegie Institution of Washington in Baltimore, Maryland and the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts. When few biologists studied the biochemistry of embryos, Ebert built programs and courses around the foci of biochemistry and genetics, especially with regards to embryology.

Created: 2008-09-12