2901 - 2925 of 3116

The Biological Bulletin

The Biological Bulletin

From 1886 to 1889 Charles Otis Whitman was director of the Allis Lake Laboratory in Milwaukee, Wisconsin. The lab was established by Edward Phelps Allis, Jr. to provide a place for biological research separate from a university setting and a place where an independent scholar like Allis himself could work. Allis had hired Whitman as an instructor to establish the lab, direct it, and lead a research program there. The lab lasted for eight years, attracted several researchers, and the papers that came out of the lab included a focus on embryology. This raised the question of where to publish the work since there were few life science journals being published in the United States , which led Whitman to propose a new journal.

With Allis’s support, Whitman started the Journal of Morphology in 1897 for long, almost monographic articles complete with elaborate illustrations. In addition, Whitman and his student William Morton Wheeler (who had also worked at the Allis Lake Laboratory) started a second journal for shorter articles and reports that could quickly appear in print. This was seen as a companion for the Journal of Morphology and was intended to embrace the entire field of animal biology. At first they called it the Zöological Bulletin, but after the first two years of publication in 1898 and 1899, the title changed to The Biological Bulletin. This also fit with the fact that the journal started out independently and then in 1890 became affiliated informally with the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, of which Whitman served as first director starting in 1888. The MBL also published its series of evening lectures throughout the 1890s, as The Biological Lectures Delivered at the Marine Biological Laboratory in Woods Holl. Whitman encouraged MBL investigators to publish in the first two journals and the lecturers to contribute their lectures to the third. Very quickly, Whitman had helped the United States establish itself as a place where serious scientific research was done in the life sciences.

Most new scientific journals start with an introduction, a statement of mission, or something that tells the reader and potential subscriber or submission author what this publication is about. Not The Biological Bulletin. It began its first issue as The Zöological Bulletin in 1897 (The Biological Bulletin in 1899) with an article by Allis himself. Other investigators from Allis Lake Lab and from the MBL submitted their work, including women scientists who were generally rare among life science researchers.

By 1899 Whitman had moved to Clark University and had realized that the journal needed a broader base. The first issue from the MBL and under the new Biological Bulletin name opened with Maynard M. Metcalf on “Some Relations between Nervous Tissue and Glandular Tissue in the Tunicata.” The issue includes articles by T. H. Morgan, Anne Moore, Garry de N. Hough, and C. W. Hargitt. The front matter says only the title of the journal and that it was edited by the Director and Members of the Staff of the Marine Biological Laboratory, Woods Holl, Massachusetts.

This continued for two years, but in 1900 Whitman and the Ginn Company in Boston that was publishing the journal had disagreements, and finding funding for the journal was a challenge. As a result, the 1900 volume had only three spring issues and 1901 came out only midway through the year. Issues resumed full force in 1902 with the New Era Publishing Company in Lancaster, Pennsylvania (which later became Lancaster Press). This was the real solid start of the journal, with the excellent administrator and Assistant Director of the Marine Biological Laboratory Frank R. Lillie serving as Managing Editor and an appointed editorial board comprised of Whitman, Edwin Grant Conklin, Jacques Loeb, Thomas Hunt Morgan, William Morton Wheeler, and Edmund Beecher Wilson. Lillie remained as managing editor for nearly a quarter of a century and placed the journal, as he did the MBL itself, on a solid intellectual and economic foundation.

In starting again in a more formal way, the MBL staff recognized the need to explain what The Biological Bulletin was meant to be. It was meant to offer an American version of the German Biologisches Centralblatt or Anatomischer Anzeiger, they said. And it was up to American scientists to join the editors and make the enterprise successful.

The journal has remained strong through many different editors and changes in MBL administration, in large part because of a clear and coherent mission that is broad enough and yet focused enough to have remained compelling for more than a century. It has been a challenge at times, when specialty publications have become the norm, to define a valuable niche for a publication that includes all of biology in its mission. The articles have been largely reports of experimental work, often but not always with marine organisms, often concentrating on the areas in which the MBL itself excels, such as neurobiology, development, cell biology, and physiology.

The journal has helped build the MBL library into one of the world’s best biological research centers, since from the beginning, the editors swapped with many other publications and thereby helped all the collections grow. Today, MBL Corporation members can choose to receive a copy of the journal with their membership, and as of 2008, all past issues are now available through open access online.

Sources

  1. Clapp, Pamela. “The History of The Biological Bulletin.” The Biological Bulletin 174 (1988): 1–3.
  2. Marine Biological Laboratory Annual Reports: available in the MBL The Biological Bulletin Vols. 17 and 21–105 at http://www.archive.org/details/biologicalbullet01mari and beginning with 2004 at http://www.mbl.edu/governance/gov_annual_report.html.

From 1886 to 1889 Charles Otis Whitman was director of the Allis Lake Laboratory in Milwaukee, Wisconsin. The lab was established by Edward Phelps Allis, Jr. to provide a place for biological research separate from a university setting and a place where an independent scholar like Allis himself could work. Allis had hired Whitman as an instructor to establish the lab, direct it, and lead a research program there. The lab lasted for eight years, attracted several researchers, and the papers that came out of the lab included a focus on embryology.

Created: 2008-10-24

The Marine Biological Laboratory-Woods Hole Oceanographic Institution Library

The Marine Biological Laboratory-Woods Hole Oceanographic Institution Library

In 1888 when students and investigators arrived in Woods Hole for the inaugural session of the Marine Biological Laboratory (MBL), they recognized the need for a library collection of books and journals. The one wooden building on campus, later known as Old Main, housed everything, with researchers upstairs and the student laboratory downstairs. Lectures were held in one corner, and shelves held what books and journals were contributed. As the first MBL Director Charles Otis Whitman noted in his 1888 Annual Report, having a library was absolutely essential for the success of the lab and would have to be provided somehow. The initial core volumes should include reference works and textbooks, and also the important journals in the four languages thought to be essential at the time.

By the second year, Whitman’s report expressed gratitude for the many contributions to the library. For Whitman, a “comprehensive biological library” would be the foundation on which a first rate laboratory would be built. Both research and instruction depend on such a resource. This early commitment to building a comprehensive journal collection as well as collecting the most important books has paid off, so that the library has been called a “national treasure” and has long been arguably the best complete and focused collection of life science journals available.

The vision for a great library was essential in attracting donations of funds to purchase journals and books, of course, but there were also other strategies for collecting. Visitors to the lab were invited to submit reprints and other research materials. When the MBL began publishing The Biological Bulletin in 1899, they immediately established an exchange program with other journals and publishers. This exchange program was critical especially in the years of WWI and again in WW II, when few libraries had funds to purchase volumes and international cooperation was more challenging. Yet it was possible to continue publishing copies of their own publications and to exchange them later when regular mailings resumed. As a result, the MBL-WHOI (the Woods Hole Oceanographic Institution) library has complete runs of most journals even when other libraries are missing those difficult years. When funds were available, the MBL purchased back issues to fill in incomplete runs and binding of individual issues into volumes became a priority very quickly (as mentioned in the fifth annual report). In 1895 Whitman urged that $1000 per year was needed just to sustain the current level of library acquisition.

In the report for the years 1896–1899, Cornelia Clapp provided the first official “Report on the Library.” Clapp had been the first student to arrive at the lab in 1888 and had returned as an investigator; she also became the first woman trustee in 1910 and served in that role until her death in 1934. It is fitting that she served as first librarian, enthusiastically growing and protecting the collection that she also used. Though referred to as “Miss Cornelia M. Clapp, Librarian,” she held a PhD from Syracuse University in 1888 and another PhD from the University of Chicago, where she worked with Whitman. In her first report she acknowledged the many gifts to the lab, including the accumulating files of papers contributed by lab researchers themselves. She appealed for more funds for purchasing and binding journals. This remained the theme for many years.

At first the library collection was housed in the shelves along one end of the wooden building. One year, many of the volumes seemed to have disappeared, but the next summer they were discovered tucked up into the roof, apparently for protection from storms though not successfully protected from all the birds. As the collections continued to grow, they added to the demand for more space. Finally, when the first permanent brick building was constructed in 1914, the library had a safe and protected home. This building, funded by second MBL Director Frank Rattray Lillie’s father-in-law Charles Crane, and named the Crane Building, gave the MBL a way to demonstrate to all potential donors and supporters that the MBL intended to last forever and to make an impact with its research and teaching missions.

The library budget remained $1000 a year, and despite its new secure home, collections depended very much on donations. Individuals donated money and books, journal exchanges expanded, and the librarians persuaded publishers to donate volumes that were then put on a New Book shelf as advertising, so that visiting scientists would go back home and have their institutional libraries buy them. In 1913 H. Mc. E. Knower served as librarian and in his report strongly urged that the library needed an assistant to serve as a year-round librarian. Just having a volunteer scientist in the summer was not enough, since the collections were often left in a chaotic muddle of energetic use by the end of a season and there was nobody there during the rest of the year to straighten things out. Especially as the number of donated reprints grew, and as they received a great deal of use during the summer, it was considerable work just restoring the collection to order. Also, trying to keep on top of all the donations and exchanges during the summer alone was insufficient.

With a new building and library facility, it was time to hire a librarian. Miss May E. Scott accepted the position and developed new catalogs, formally reaccessioned all the materials, and determined that the library had over 3300 volumes, plus about 1500 reprints. During the first year of her service, the library bound over five hundred volumes, replaced missing numbers, and added many more items. With a generous donation of over 2500 duplicates from the American Museum of Natural History, the library had achieved a new level of excellence.

Through the years, major donations have come at critical times from such groups and foundations as the Carnegie Foundation, and the General Education Board ($10,000 in 1926), so that after a period of intense growth, by 1926 the library had already grown to 18, 220 volumes plus a carefully catalogued 38,000 reprints.

In 1924 the library moved to what became the five permanent stacks in the Lillie Building—a substantial brick building that extended the Crane laboratories. The building was constructed with major donations of well over one million dollars, especially from Rockefeller Foundation and John D. Rockefeller, Jr. personally, Carnegie Corporation, and Charles Crane. The tremendous collaborative success shows just how highly the MBL was regarded as a place of life science research and education.

After Jane Fessenden became Librarian, the staff and collections grew considerably, as did their use. By the 1980s, it was becoming clear that the library was gathering a substantial collection, including some very valuable books and complete runs of journals that could not be replaced. The Rare Books Room and Archives opened in the 1980s after Cathy Norton took over as Librarian. The library moved to electronic publishing, with an emphasis on providing access for scientists in a way that successfully archives publications for continued use.

The Rare Books Room and Archives contain rare books, of course, a catalog of which is available to anyone since the MBL-WHOI Library is committed to making materials available for use rather than preserving them in ways that exclude legitimate scholarly access. There are some artifacts, including a few items from courses or Albert Szent-Gyorgyi’s Nobel Prize for his work on vitamin C in Hungarian paprika peppers. The collection includes a few archival files, including some from Frank Lillie that were transferred to the MBL from the University of Chicago, as well as some notebooks, scrapbooks, and letters. And the collection has brought together valuable historical research materials into library exhibits, including the Leuckart Charts and other collections. In addition, the MBL is home to marvelous MBL Library Photograph Collections, featuring early photographs dating back to before the MBL was founded, a number of scrapbooks, and the wonderful Alfred Frances Huettner Collection.

Today the library serves both the MBL and WHOI, based on a decision to combine resources to make an internationally leading library rather than to compete in the same small village of Woods Hole. The MBL-WHOI library provides services for library researchers, some of whom draw mainly on the electronic journals, and Library Director Cathy Norton has become a leader in promoting bioinformatics and extending the use of the collections through networks of users.

As a result, one might be tempted to think that there is no reason to come to the actual MBL, since one can sit home and access modern journals on line. But this remains a vibrant place of science in the labs and in the courses. The library is a place where readers can find everything, pull it off the shelf, and see what else was going on in the same journal or at the same time. For at least the past decades, the MBL has seen a number of library readers who come precisely because they can find whatever they need “right there.” Recently, the library has added the formal category of Library Researcher, for those who come to spend a sabbatical, finish a major book project, or to collaborate with other scholars while using the library resources. The MBL-WHOI Library is very much an active place to find many kinds of wonderful materials but also a great place to find other people who know things and know where to find more materials. This place will never become obsolete because it is leading library information systems development, as through the Encyclopedia of Life Project and the Biodiversity Heritage Library. And this is also where the archival materials are housed and where scholars will find those materials and other scholars studying them.

Sources

  1. Marine Biological Laboratory Annual Reports: available in the MBL The Biological Bulletin Vols. 17 and 21–105 at http://www.archive.org/details/biologicalbullet01mari and beginning with 2004 at http://www.mbl.edu/governance/gov_annual_report.html.

In 1888 when students and investigators arrived in Woods Hole for the inaugural session of the Marine Biological Laboratory (MBL), they recognized the need for a library collection of books and journals. The one wooden building on campus, later known as Old Main, housed everything, with researchers upstairs and the student laboratory downstairs. Lectures were held in one corner, and shelves held what books and journals were contributed.

Created: 2008-10-25

Biological Lectures Delivered at the Marine Biological Laboratory in Woods Hole

<i>Biological Lectures Delivered at the Marine Biological Laboratory in Woods Hole</i>

The Marine Biological Laboratory in Woods Hole, Massachusetts, began in 1888 with one building housing researchers upstairs and students in a shared lab and lecture space downstairs. For the first two years, instruction took the form of general lectures covering a range of topics in zoology. In addition, the trustees offered some public lectures in Boston to raise funds for the lab.

In 1890 the lab began a new tradition that has continued every year since. They began a series of evening lectures intended to be accessible to a wide audience of those interested in biology. Eventually these became known as the Friday Evening Lectures, and since the opening of the auditorium in the Lillie Building in 1924 (named after second Director Frank Rattray Lillie) the lectures have been held there. Every Friday evening during the summer season, the community of scientists, students, and members of the public interested in science stream into the auditorium for their weekly lecture, then move to the reception held afterward. These lectures are a high point of the MBL’s summer of science.

Throughout the 1890s Charles Otis Whitman, as the MBL’s first Director, persuaded the lecturers to write up their lectures and publish them. He organized the lectures of 1890 and then 1893–1899 into volumes that appeared as a serial that both showed the larger world what the MBL offered and brought leading scientists to the lab to participate in the lectures and their publications.

The Biological Lectures Delivered at the Marine Biological Laboratory in Woods Holl provides a useful insight into what were thought to be the driving questions of the day and what were seen as productive ways of approaching them. Some years reveal a general distribution of topics, while other years are much more focused.

For an introduction to the lectures, see Jane Maienschein’s introduction to Defining Biology. This volume offers a sampling of the lectures and also a complete list of lectures published during the 1890s. The MBL Annual Reports provide a list of every year’s lecturers and demonstrate the shifts in emphasis over time, as well as changing trends in biology.

Sources

  1. Maienschein, Jane, ed. Defining Biology: Lectures from the 1890s. Cambridge: Harvard University Press, 1986.
  2. Marine Biological Laboratory Annual Reports: available in the MBL Biological Bulletin Vols. 17 and 21–105 at http://www.archive.org/details/biologicalbullet01mari and beginning with 2004 at http://www.mbl.edu/governance/gov_annual_report.html.

The Marine Biological Laboratory in Woods Hole, Massachusetts, began in 1888 with one building housing researchers upstairs and students in a shared lab and lecture space downstairs. For the first two years, instruction took the form of general lectures covering a range of topics in zoology. In addition, the trustees offered some public lectures in Boston to raise funds for the lab.

Created: 2008-10-24

James David Ebert (1921-2001)

James David Ebert (1921-2001)

James David Ebert studied the developmental processes of chicks and of viruses in the US during the twentieth century. He also helped build and grow many research institutions, such as the Department of Embryology in the Carnegie Institution of Washington in Baltimore, Maryland and the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts. When few biologists studied the biochemistry of embryos, Ebert built programs and courses around the foci of biochemistry and genetics, especially with regards to embryology. He eventually directed the MBL's Embryology Course, and later, the MBL itself.

Ebert was born on 11 December 1921 in the town of Bentleyville, Pennsylvania. He attended public schools while growing up and then graduated from Washington and Jefferson College in Washington, Pennsylvania in 1942. Not long after graduation he joined the United States Navy and eventually became a lieutenant. Ebert was stationed on a destroyer in the Pacific Ocean that was attacked by a kamikaze pilot. The destroyer sank and Ebert spent twenty-four hours in the ocean until being rescued. Afterwards, as a biologist, Ebert befriended and trained several Japanese developmental biologists.

In 1946 Ebert began working towards his PhD in developmental biology under the instruction of Benjamin Willier at the Johns Hopkins University in Baltimore, Maryland. In the same year he married Alma Goodwin, who was a Women Accepted for Volunteer Emergency during the war. Ebert received his PhD in 1950 and immediately became a member of the faculty at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. After one year at MIT, Ebert moved to Indiana University in Bloomington, Indiana. Ebert became an associate professor of zoology by 1955, and he had started a program of experimental embryology. He studied chick embryos and the processes by which the protein make-up of the embryos changed throughout development.

Six years after receiving his PhD, Ebert became the director of the Carnegie Institution of Washington's Department of Embryology, in Baltimore, Maryland. Prior to Ebert's term as director, the department had had three other directors. The Institution's president, Caryl Haskins, had contemplated closing the department and starting something new. However, with some persuasion from Willier, Haskins spoke with Ebert and decided to give him the opportunity to run the department. Ebert and Haskins agreed that the department needed to focus on the study of genes and their regulation as well as the ways cells influence one another. Haskins said that Ebert's youth and enthusiastic personality made Haskins believe that Ebert would provide a fresh perspective to the department.

Ebert argued that it was his job to recognize and to recruit new talent and then support them in their work. He stressed the use of biochemistry and genetics, which in the 1960s blended together to form molecular biology. During this time, Ebert started to study the relationship between muscle cell differentiation and the propensity to infection in the Rous sarcoma virus.

While still director of the Carnegie embryology department, in 1970 Ebert also became the president and nonresident director of the Marine Biological Laboratory (MBL) at Woods Hole. At the MBL he researched, with Keiko Ozato, the response of murine lymphocytes to mitogens.

In 1977 Ebert ended his term at the Carnegie Department of Embryology, but he remained the director of the MBL. From 1978 until 1987, Ebert lived in Washington, D.C., and he was the president of the whole Carnegie Institution of Washington. As the institution's president, he made the decision to help build a large optical telescope in Chile at Las Campanas Observatory, and he worked towards the creation of a common campus for both Carnegie departments in Washington.

Ebert remained involved with scientific institutions for the rest of his life. When leaving one institution, he found another one to join. He retired from the Carnegie Institution in 1987 and became the president of the Chesapeake Bay Institute at the Johns Hopkins University, where he was a professor of biology for six years. Ebert was elected to many societies including the National Academy of Sciences, the American Philosophical Society, the American Academy of Arts and Sciences, and the Institute of Medicine. He was the vice president of the National Academy of Sciences from 1981 through 1993 and he also chaired its Government-University-Industry Research Roundtable from 1987 through 1993. His colleagues elected him as president of the Society for the Study of Development and Growth, the American Institute of Biological Sciences, and the American Society of Zoologists.

In retirement, Ebert and his wife Alma spent half of each year in Woods Hole and at the MBL. Ebert and Alma died on 22 May 2001 in an automobile accident while en route to Woods Hole.

Sources

  1. DeHaan, Robert L., and James D. Ebert. "Morphogenesis." Annual Review of Physiology 26 (1964): 15–46.
  2. Ebert, James D. "An analysis of the effects of anti-organ sera on the development, in vitro, of the early chick blastoderm." Journal of Experimental Zoology 115 (1950): 351–77.
  3. Ebert, James D. "An analysis of the synthesis and distribution of the contractile protein, myosin, in the development of the heart." Proceedings of the National Academy of Sciences 39 (1953): 333–44.
  4. Ebert, James D. "The effects of chorioallantoic transplants of adult chicken tissues on homologous tissues of the host chick embryo." Proceedings of the National Academy of Sciences 40 (1954): 337–47.
  5. Ebert, James D. "The formation of muscle and muscle-like elements in the chorioallantoic membrane following inoculation of a mixture of cardiac microsomes and Rous sarcoma virus." Journal of Experimental Zoology 142 (1959): 587–621.
  6. Ebert, James D., and Ian M. Sussex. Interacting Systems in Development. New York: Holt, Rinehart and Winston, 1970.
  7. Ebert, James D., and Fred H. Wilt. "Animal Viruses and Embryos." The Quarterly Review of Biology 35 (1960): 261–312.
  8. Obituaries. "Jim and Alma Ebert." Marine Biological Laboratory. http://www.mbl.edu/news/obit/obit_ebert.html (Accessed December 8, 2007).
  9. Ozato, Keiko, William H. Adler, and James D. Ebert. "Synergism of bacterial lipopolysaccharides and concanavalin A in the activation of thymic lymphocytes." Cellular Immunology 17 (1975): 532–41.
  10. Singer, Maxine. "James David Ebert." Proceedings of the American Philosophical Society 148 (2004): 124–27.

James David Ebert studied the developmental processes of chicks and of viruses in the US during the twentieth century. He also helped build and grow many research institutions, such as the Department of Embryology in the Carnegie Institution of Washington in Baltimore, Maryland and the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts. When few biologists studied the biochemistry of embryos, Ebert built programs and courses around the foci of biochemistry and genetics, especially with regards to embryology.

Created: 2008-09-12

Jane Maienschein (1950- )

Jane Maienschein

Thumbnail portrait

Jane Maienschein is the daughter of Joyce Kylander and Fred Maienschein, and was born in Oak Ridge, Tennessee, on 23 September 1950. She attended MIT as a freshman and then transferred to Yale University in 1969 when Yale decided to admit women undergraduates. In 1972 she graduated with an honors degree in History, the Arts, and Letters having written a thesis on the history of science. She then attended Indiana University and studied with historian of embryology Frederick B. Churchill, took courses with embryologist Rudolf Raff, and learned how to do embryological laboratory research with Robert Briggs. She received her MA in 1976 and a PhD in 1978, with a pre-doctoral Fellowship at the Smithsonian to study the history of microscopes and microscopy, and an NSF-funded dissertation improvement visit to the Marine Biological Laboratory (MBL) to reproduce old embryological experiments and soak up the history and resources of the MBL Library and labs. Maienschein’s scholarly research focuses on the history and philosophy of developmental biology.

In graduate school Briggs helped Maienschein reproduce historical experiments using the dissertation study of Ross Granville Harrison’s 1907 experiments on nerve fiber development. Harrison had asked whether the neuroblast cell (which we would now call a neural stem cell) can reach out and develop its fiber by protoplasmic outgrowth or whether the cell required a pre-established bridge, as many of his contemporaries argued must be the case. Harrison carried out the first ever tissue culture experiment, in which he got the neuroblast cells to grow when transplanted into an artificial medium of frog lymph. Briggs and Maienschein discovered that carrying out the experiment with the techniques Harrison described led to lots of nice bacterial and other unidentified cultures, but not nerve cells. Retracing Harrison’s steps revealed that he had taken advantage of being temporarily housed near the bacteriologists at Yale University and had used more sophisticated aseptic techniques than he described.

This work led Maienschein to an analysis of the role of the details of scientific practices and the value of carrying out “practical history,” as Edwin Clarke called it. She has also asked questions about the role of experiments in settling (or failing to settle) issues of theoretical debate. Her work in history of embryology has concentrated especially on the late nineteenth and into the twentieth century, including work done at the Marine Biological Laboratory in Woods Hole, Massachusetts, and on issues of morphogenesis and differentiation related to cell division. This research has led her to study stem cell research and regenerative medicine.

Maienschein is also a dedicated teacher who has received multiple awards, including the Arizona State University Parents Association Professor of the Year Chair, Regents’ Professorship, and President’s Professorship. In addition, she received the History of Science Society’s Joseph H. Hazen Education Prize Award. During the 105th United States Congressional session, in 1997 and 1998, she served as senior science advisor to Congressman Matt Salmon, who served on the Science Committee. She took a group of undergraduates to Washington, which led to their paper presentation at the 150th meeting of the American Association for the Advancement of Science, and that led to an invitation to write an editorial for Science. The students’ essay on “Scientific Literacy” remains the only publication in Science by undergraduates, and it led to a longer peer-reviewed article in Science Communication.

This personal exposure to the political context of science also led Maienschein to research reflecting more seriously on the social, political, and legal contexts of scientific research. Most productively, this has resulted in collaborative publications and projects with bioethicist Jason Scott Robert and Rachel Ankeny.

Maienschein served as the first president for the International Society for History, Philosophy, and Social Studies of Biology (“Ishkabibble”) in 1989–1991, president of the History of Science Society in 2008 and 2009, and in numerous other administrative rolls. She is Director of the Embryo Project, along with Manfred Laubichler.

Sources

  1. Arizona State University. http://www.public.asu.edu/~atjvm/ (Accessed October 24, 2008).
  2. Arizona State University Libraries. http://knet.asu.edu/research/?getObject=asulib:41285 (Accessed October 24, 2008).
  3. School of Life Sciences, Arizona State University. http://sols.asu.edu/people/faculty/jmaienschein.php (Accessed October 24, 2008).

Jane Maienschein is the daughter of Joyce Kylander and Fred Maienschein, and was born in Oak Ridge, Tennessee, on 23 September 1950. She attended MIT as a freshman and then transferred to Yale University in 1969 when Yale decided to admit women undergraduates. In 1972 she graduated with an honors degree in History, the Arts, and Letters having written a thesis on the history of science. She then attended Indiana University and studied with historian of embryology Frederick B.

Created: 2008-10-24

Charles Otis Whitman (1842-1910)

Charles Otis Whitman

Charles Otis Whitman was an extremely curious and driven researcher who was not content to limit himself to one field of expertise. Among the fields of study to which he made significant contributions were: embryology; morphology, or the form of living organisms and the relationships between their structures; natural history; and behavior. Whitman served as director of several programs and institutions, including the Biology Department at the University of Chicago, where he helped establish a new style of biology and influenced the work of many researchers of his generation, as well as future ones. He also served as first director of the Marine Biological Laboratory (MBL) in Woods Hole, MA. Besides his considerable achievements with his own scientific research, Whitman was a tireless mentor who had many students who went on to achieve great success in the field of embryology.

Whitman was born in North Woodstock, Maine, to parents Marcia and Joseph Whitman on 14 December 1842. He grew up on a farm and developed an interest in natural history, particularly that of pigeons, at an early age. Whitman’s family was typical of the rural area where he grew up, and he was educated in the public school system, but despite his family’s lack of money he was highly motivated to receive a college education. Whitman earned money by teaching and tutoring in private schools, and in 1865 he began attending Bowdoin College in Brunswick, Maine. Whitman was enrolled in the accelerated program and finished his degree in 3 years, graduating in 1868 with a BA. After graduation from Bowdoin College, Whitman took a position as Principal of Westford Academy in Massachusetts, where he remained for four years. He then moved to Boston to accept a position as instructor in natural science at English High School. This move was one of great importance, as it was in Boston that he became aware of Harvard University Professor of Zoology Louis Agassiz and enrolled to become one of fifty participants in the first session of the summer marine biology program at the Anderson School of Natural History on Penikese Island in 1873. This experience had a profound impact on Whitman as well as on other of Agassiz’s students. In 1874 Whitman joined the Boston Society of Natural History and, after a second summer at Penikese, he decided to dedicate himself to the full-time study of zoology.

In 1875 Whitman went to study in Europe under Anton Dohrn at the Stazione Zoologica in Naples. After working with Dohrn in Naples, Whitman and his fellow Penikese Island student Charles Sedgwick Minot moved to Leipzig, Germany. There, under the direction of parasitologist Rudolf Leuckart, he learned the modern methods of embryology and microscopy. Whitman received his PhD from the University of Leipzig in 1878. His dissertation was “The Embryology of Clepsine (glossiphonia)”, with an emphasis on the direct role of cleavage in histogenesis, or the differentiation of cells into specialized tissue and organs during growth. This research was instrumental in laying the groundwork for future studies of cell lineage. Whitman found evidence that leech egg development was completely predetermined. This finding supported the regulative theory of embryo development, according to which the whole embryo regulates the development of each cell, in contrast to the mosaic theory in which each cell develops independently, like a mosaic tile. His discoveries while working with the leech were instrumental to future taxonomical and morphological studies.

In 1879 he was offered a postdoctoral fellowship at the Johns Hopkins University but turned it down when he was invited to become Professor of Zoology at the Imperial University of Tokyo. He only spent two years there, but his short tenure was extremely influential. Eight of Whitman’s students there went on to become prominent zoologists, including four who held major chairs, affording him the informal title “father of zoology” in Japan. From November 1881 until May 1882, Whitman returned to the Stazione Zoologica to study the embryology, life history, and classification of the dicyemids which led to the publication of a standard reference work on the parasite in 1883. From 1882 through 1886 Whitman worked as an assistant to Alexander Agassiz at the Museum of Comparative Zoology at Harvard University. During this time Whitman also served as the editor for the Department of Microscopy at the American Naturalist Magazine. After Harvard, Whitman took the job of tutoring amateur zoologist Edward Phelps Allis, Jr., in Milwaukee, Wisconsin. In addition to tutoring Allis, he took on the task of directing the very short lived Allis Lake Laboratory. While there, Whitman oversaw the work of many researchers, including William Morton Wheeler, who went on to become a prominent figure in the study of social insects.

During the summer of 1888 Whitman was invited to direct the newly established Marine Biological Laboratory in Woods Hole, a position he held until 1908. In 1889 Whitman left the Allis Lake facility to take the position of Chair of Zoology at Clark University in Worcester, Massachusetts. In 1892 Whitman moved again to become head of the biology department at the newly founded University of Chicago. There Whitman had several students who went on to make names for themselves in embryology. One of the most prominent was Frank Rattray Lillie, who took over as director at the MBL after Whitman and succeeded Whitman at the University of Chicago, as well. Whitman had many embryologist colleagues at Chicago, including Frank Rattray Lillie, Jacques Loeb, Franklin Paine Mall, Albert Davis Mead, Shosaburo Watase, and William Morton Wheeler. Whitman remained at the University of Chicago until his death on 6 December 1910.

Whitman’s study of sexual dimorphism, the morphological differences between male and female organisms of the same species, was an influence on Oscar Riddle and his endocrinological research. Whitman’s 1898 paper “Animal Behavior” contains many examples of innate, non-learned, behavior. In his later work, he analyzed the relation between innate and learned behavior and the ability of animals to adjust their behavior to new experiences. Whitman saw a similarity of variation in related species, and the trends of evolutionary change in all species from the simplest of organisms to the most advanced. In 1900, when researchers were torn between the theories of mutation and selection, Whitman was a strong proponent of selection.

Whitman published papers and journal articles on every aspect of his work, but is probably best known for his posthumously published three-volume work The Orthogenic Evolution in Pigeons, considered to be the first extensive study in comparative ethology. Whitman was instrumental in the founding of several journals and academic institutions, including the Journal of Morphology, the Biological Bulletin, and the American Morphological Society which, through a merger with the Western Branch of the American Society of Naturalists (known as the Society of American Zoologists in 1901 and 1902), became the American Society of Zoologists in 1902.

Whitman’s work significantly impacted the field of embryology. It greatly influenced the researchers of his generation as well as future generations. Whitman made significant contributions in the fields of embryology, morphology, taxonomy, and ethology. He published numerous books and papers in all of these subjects. Whitman was a mentor to biology students in several institutions around the world. Many of the institutions and publications he founded continue to be at the top of the field of embryology today.

Sources

  1. Carr, Harvey A., and Oscar Riddle, eds. Posthumous Works of Charles Otis Whitman. Vol. I–III. Washington DC: Carnegie Institution of Washington, 1919.
  2. Davenport, Charles B. “The Personality, Heredity and Work of Charles Otis Whitman.” American Naturalist 51 (1917): 5–30.
  3. Gilbert, Scott. Developmental Biology, 7th ed. Sunderland, MA: Sinauer Associates Inc., 2003.
  4. Mayr, Ernst. “Whitman, Charles Otis.” Dictionary of Scientific Biography 13: 313–15.
  5. Newman, Horatio Hackett. “History of the Department of Zoology in the University of Chicago.” Bios 19 (1948): 215–39.
  6. Pauly, Philip J. “From Adventism to Biology—the Development of Whitman, Charles Otis.” Perspectives in Biology and Medicine 37 (Spring 1994): 395–408.

Charles Otis Whitman was an extremely curious and driven researcher who was not content to limit himself to one field of expertise. Among the fields of study to which he made significant contributions were: embryology; morphology, or the form of living organisms and the relationships between their structures; natural history; and behavior.

Created: 2009-01-21

Embryology Course Photograph 2003

Students and faculty in the 2003 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 2007

Embryology Course Photograph 1962

Students and faculty in the 1962 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1962

Embryology Course Photograph 1982

Students and faculty in the 1982 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1982

Embryology Course Photograph 1959

Students and faculty in the 1959 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1959

Embryology Course Photograph 1949

Students and faculty in the 1949 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1949

Embryology Course Photograph 1973

Students and faculty in the 1973 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1973

Embryology Course Photograph 1974

Students and faculty in the 1974 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1974

Embryology Course Photograph 1950

Students and faculty in the 1950 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1950

Embryology Course Photograph 1941

Students and faculty in the 1941 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1941

Embryology Course Photograph 1893

Students and faculty in the 1893 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1893

Embryology Course Photograph 1979

Students and faculty in the 1979 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1979

Embryology Course Photograph 1987

Students and faculty in the 1987 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1987

Embryology Course Photograph 1976

Students and faculty in the 1976 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1976

Embryology Course Photograph 1985

Students and faculty in the 1985 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1985

Embryology Course Photograph 2008

Students and faculty in the 2008 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 2008

Embryology Course Photograph 1978

Students and faculty in the 1978 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1978

Embryology Course Photograph 1968

Students and faculty in the 1968 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1968

Embryology Course Photograph 1975

Students and faculty in the 1975 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1975

Embryology Course Photograph 1956

Students and faculty in the 1956 Embryology Course at the Marine Biological Laboratory in Woods Hole, MA

Created: 1956