201 - 225 of 347

Collecting Net. v. 16, 1941

Vol. 16. 10 numbered issues published from June 28-Aug. 30, 1941. Numbered both as issues 1-10 and issues 138-147.

Created: 1941

Collecting Net. v. 17, 1942

Vol. 17. 5 numbered issues published from July 4-Aug. 29, 1942. Numbered both as issues 1-5 and issues 148-152. Published biweekly.

Created: 1942

Collecting Net. v. 15, 1940

Vol. 15. 10 numbered issues published from June 29-Aug. 31, 1940. Numbered both as issues 1-10 and issues 128-137.

Created: 1940

Collecting Net. v. 14, 1939

Vol. 14. 9 numbered issues published from July 8-Sept. 2, 1939. Numbered both as issues 1-9 and issues 118-126. Includes "Hurricane Number", dated March 1939.

Created: 1939

Collecting Net. v. 13, 1938

Vol. 13. 8 numbered issues published from July 16-Sept. 3, 1938. Numbered both as issues 1-8 and issues 110-117.

Created: 1938

Collecting Net. v. 12, 1937

Vol. 12. 9 numbered issues published from July 3-Aug. 28, 1937. Numbered both as issues 1-9 and issues 101-109.

Created: 1937

Collecting Net. v. 1, 1926

Vol. 1. 6 numbered issues (no. 1 without title) published from July 21-Aug. 26, 1926

Created: 1926

Collecting Net. v. 10, 1935

Vol. 10. 10 numbered issues published from July 6-Sept. 7, 1935. Numbered both as issues 1-10 and issues 82-91.

Created: 1935

Collecting Net, third series, vol. 6, no. 1, Spring 2010

Marine Biological Laboratory Employee newsletter

Created: 2010

Collecting Net, third series, vol. 7, no. 1, Fall 2011

Marine Biological Laboratory Employee newsletter

Created: 2011

Collecting Net, third series, vol. 4, no. 3, Fall 2008

Marine Biological Laboratory Employee newsletter

Created: 2008

Collecting Net, third series, vol. 5, no. 2, Fall/Winter 2009

Marine Biological Laboratory Employee newsletter

Created: 2009

Collecting Net, third series, vol. 6, no. 2, Fall 2010

Marine Biological Laboratory Employee newsletter

Created: 2010

MBL Monthly, vol. 11, no. 9, December 2002

Employee newsletter published by the Communications Office.

Created: 2002

MBL Monthly, vol. 11, no. 8, November 2002

Employee newsletter published by the Communications Office.

Created: 2002

MBL Monthly, vol. 11, no. 7, October 2002

Employee newsletter published by the Communications Office.

Created: 2002

MBL Monthly, vol. 11, no. 6, September 2002

Employee newsletter published by the Communications Office.

Created: 2002

MBL Monthly, vol. 11, no. 5, Summer 2002

Employee newsletter published by the Communications Office.

Created: 2002

MBL Monthly, vol. 11, no. 3, March 2002

Employee newsletter published by the Communications Office.

Created: 2002

MBL Monthly, vol. 11, no. 2, February 2002

Employee newsletter published by the Communications Office.

Created: 2002

MBL Monthly, vol. 11, no. 4, April 2002

Employee newsletter published by the Communications Office.

Created: 2002

MBL Monthly, vol. 11, no. 1, January 2002

Employee newsletter published by the Communications Office.

Created: 2002

Ernest Everett Just (1883-1941)

Ernest Everett Just

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the “fertilizing” theory of Frank R. Lillie and served as an antagonist to Jacques Loeb’s work with artificial parthenogenesis. Just’s many experiments with marine invertebrates showed that the egg surface, or ectoplasm, plays an important role in the fertilization and development of eggs.

Just was born in Charleston, South Carolina, on 14 August 1883 to Charles Frazier Just Jr. and Mary Matthew Just. His father died in 1887 and soon after the Just family moved to James Island, off the coast of South Carolina. His early education consisted of attending the small school that his mother founded and directed. Just left James Island at the age of twelve to attend the Colored Normal Industrial Agricultural and Mechanics College at Orangeburg (now South Carolina State College). In 1899 Just graduated with a Licentiate of Instruction, meaning that he was certified to teach in any black school in South Carolina. He was only fifteen years old.

Teaching did not appeal to the teenager so he traveled north, picking up odd jobs along the way until he reached Kimball Union Academy in Meriden, New Hampshire. Just finished a classical course of study in three years, during which time his mother died. The young college graduate was advised by friends and teachers to attend Dartmouth College which he decided to do. At Dartmouth, Just studied biology, history, literature, and the classics. He graduated from Dartmouth in 1907, the only “magna cum laude” in his class, with an AB degree and joined the English faculty at Howard University, Washington, DC in the fall of that same year. He was asked to take over the biology department and teach physiology in 1910, in addition to his English teaching duties. Soon after, Just became the first head of the new Department of Zoology and gave up teaching English courses.

Through a Dartmouth contact, Just communicated with Lillie at the University of Chicago about a post-graduate degree in biology. Lillie directed Just to begin research in 1909 at Woods Hole and to take courses at the University of Chicago. Work at the marine station quickly turned into a research assistantship, working side-by-side with Lillie. All of this was done in addition to maintaining a full-time teaching position at Howard. After obtaining his PhD, Just returned annually to Woods Hole as an independent researcher.

Just focused his interests on marine invertebrate eggs, both in the laboratory and in their natural setting. Because of his tacit knowledge of how marine invertebrates reproduced in oceans and estuaries, Just was able to closely match his laboratory environment to that of the organism’s natural environment. In 1912, Just’s first paper, “The Relation of the First Cleavage Plane to the Entrance Point of the Sperm.” was published in the Biological Bulletin. Just showed that eggs of the marine worm (Nereis) cleave in different planes depending on the sperm’s point of entry. To Just, the egg’s surface was an important and robust factor in the fertilization process. By showing that sperm had an equal probability of entering the egg at any point on the egg’s surface, and that the direction of cleavage depended on the arbitrary point of entry of sperm, and not some predetermined cleavage plane, Just made a dent in preformationist theory. It was also during this time that he married Ethel Highwarden in 1912 and met Jacques Loeb while Loeb was at the Rockefeller Institute for Medical Research. Similar research interests and Loeb’s stand on social equality made the two embryologists fast, but not longstanding friends. In 1915 Just was the first to receive the Spingarn Medal, presented annually to the African-American who performs the greatest service to his or her race. This was followed by the University of Chicago awarding Just his PhD degree in experimental embryology in 1916.

During 1919 and 1920, Just published four papers in the Biological Bulletin, all focusing on his work with the sand dollar Echinarachnius parma. In one set of experiments Just measured the elevation of the egg membrane at sperm contact and the time that it took for the membrane to be penetrated by a sperm. He observed that the sperm was pulled into the egg rather than the commonly held view that it actively bored its way into the egg. Just also documented a “wave of instability” that moved from the sperm’s entry point to the opposite side of the egg. Since then, embryologists have proven that such an instability wave is a wave of cortical granule exocytosis that forms the fertilization envelope. Just also saw that the wave was associated with an immediate blocking of any further sperm penetrability of the egg.

In 1920, while continuing to teach at Howard, Just obtained a ten-year research fellowship from Julius Rosenwald through the National Research Council. He wasted no time in returning to his work at Woods Hole where he continued to study the process of fertilization with results that strengthened Lillie’s work and questioned Loeb’s idea of “superficial cytolysis.” According to Loeb’s studies, egg development could be initiated by exposing eggs to butyric acid. Development was then immediately followed by the release of lysine, Loeb’s cytolytic agent, to break down the egg cortex. Just showed that putting eggs in butyric acid for a short period of time actually slowed cytolysis rather than sped it up. Just was able to prove that the cytolytic effect of the butyric acid was due to overexposure of the eggs to the acid and nothing more. He went even further in dismissing Loeb’s experimental findings on artificial parthenogenesis, attacking Loeb’s method of record-keeping and his apparent failure to maintain experimental conditions to mimic his experimental organisms’ natural environments.

The friendship that Just and Loeb had forged together at Woods Hole quickly vanished. Their disagreements played out for many years, with Loeb providing negative evaluations of Just to the Rockefeller Institute and the Carnegie Foundation. Every time Just tried to obtain grant money, Loeb’s evaluations seemed to rise up and quell any grant award.

In 1929 Just made his first trip to Europe and worked at Anton Dohrn’s Stazione Zoologica in Naples. For six months he experimented with sea urchins (Paracentrotus lividus and Echinus microtuberculatus) to see how these organisms develop and to continue testing Lillie’s “fertilizin” theory of fertilization. Around 1906 Lillie had hypothesized that eggs release a substance that he coined fertilizin. Upon contact with spermatozoa, said Lillie, fertilizin causes sperm to attach to it. Lillie believed that fertilizin molecules served as receptors on the egg’s surface. With receptors for egg and sperm surfaces, the molecule helped to “agglutinate” egg and sperm together.

In 1930 Just was invited to the Kaiser Wilhelm Institute in Berlin where he continued his studies of the ectoplasm with other species, including Amoeba. Just strove to show the importance of ectoplasm in initiation of development. While in Europe he published three articles on the role of ectoplasm: “ Die Rolle des kortikalen Cytoplasmas bei vitalen Erscheinungen” (“The Role of Cortical Cytoplasmin Vital Phenomena”) in Naturwissenschaften (1931) and “On Origin of Mutations” (1932) and “Cortical Cytoplasm and Evolution” (1933), both published in the American Naturalist. All three articles pointed to Just’s view that ectoplasm is necessary for fertilization to occur.

With little hope of ever being able to teach anywhere but a black college, and his continued failure to secure research funds, Just went to Europe in 1938 with the intent of leaving Howard and finishing out his research career on a new continent. In 1939 he published two books: Basic Methods for Experiments on Eggs of Marine Animals and The Biology of the Cell Surface. Both books reflected Just’s holistic view of eggs and embryos: that is, eggs are to be taken seriously in their own right rather than seen simply as tools to manipulate in order to prove a theory. While Just’s experiments may have been simple, he was an intense perfectionist when it came to laboratory procedure. His ability to keep laboratory environments similar to actual marine environments aided in the integrity of his research. It also led to his life-long criticism of experimental embryologists who failed to appreciate his tacit knowledge about inducing marine invertebrate reproduction. To Just, too many embryologists were busy taking eggs out of natural environments and subjecting them to unnatural manipulations while ignoring the importance of the eggs’ environment as an important factor in development. In The Biology of the Cell Surface, Just also continued his attack on the role of genes in development. He remained adamant that cytoplasm was the key to development and not the nucleus. This countered the growing enthusiasm by geneticists who held the idea that the nucleus controlled fertilization and development.

The Nazi invasion of France in 1940 forced Just to return to the US and Howard University, one of the few institutions at the time that would hire a black scientist. His attempt to recareer again in the United States was short-lived however. Just died of pancreatic cancer on 27 October 1941.

Sources

  1. Byrnes, Malcolm W. “Ernest Everett Just.” New Dictionary of Scientific Biography 4: 66– 70.
  2. Byrnes, Malcolm W., and William R. Eckberg. “Ernest Everett Just (1883-1941): An Early Ecological Developmental Biologist,” Developmental Biology 296 (2006): 1– 11.
  3. Gilbert, Scott F. “Cellular Politics: Ernest Everett Just, Richard B. Goldschmidt, and the Attempt to Reconcile Embryology and Genetics.” In The American Development of Biology, eds. Ronald Rainger, Keith R. Benson, and Jane Maienschein, 311–42. Philadelphia, PA: University of Pennsylvania Press, 1988.
  4. Gould, Stephen Jay. “Just in the Middle: A Solution to the Mechanist-Vitalist Controversy.” In The Flamingo’s Smile: Reflections in Natural History, 337-391. New York: W. W. Norton, 1985.
  5. Just, Ernest E., “The Relation of the First Cleavage Plane at the Entrance Point of the Sperm,” Biological Bulletin 22 (1912): 239–52.
  6. Lillie, Frank R. “Obituary of Ernest Everett,” Science 95 (1942): 10–11.
  7. Manning, Kenneth J. Black Apollo of Science: The Life of Ernest Everett Just. New York: Oxford University Press, 1983.
  8. Pauly, Philip J. Controlling Life: Jacques Loeb and the Engineering Ideal in Biology. New York: Oxford University Press, 1987.

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served as an antagonist to Jacques Loeb's work with artificial parthenogenesis.

Created: 2010-06-16

The Biological Bulletin

The Biological Bulletin

From 1886 to 1889 Charles Otis Whitman was director of the Allis Lake Laboratory in Milwaukee, Wisconsin. The lab was established by Edward Phelps Allis, Jr. to provide a place for biological research separate from a university setting and a place where an independent scholar like Allis himself could work. Allis had hired Whitman as an instructor to establish the lab, direct it, and lead a research program there. The lab lasted for eight years, attracted several researchers, and the papers that came out of the lab included a focus on embryology. This raised the question of where to publish the work since there were few life science journals being published in the United States , which led Whitman to propose a new journal.

With Allis’s support, Whitman started the Journal of Morphology in 1897 for long, almost monographic articles complete with elaborate illustrations. In addition, Whitman and his student William Morton Wheeler (who had also worked at the Allis Lake Laboratory) started a second journal for shorter articles and reports that could quickly appear in print. This was seen as a companion for the Journal of Morphology and was intended to embrace the entire field of animal biology. At first they called it the Zöological Bulletin, but after the first two years of publication in 1898 and 1899, the title changed to The Biological Bulletin. This also fit with the fact that the journal started out independently and then in 1890 became affiliated informally with the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, of which Whitman served as first director starting in 1888. The MBL also published its series of evening lectures throughout the 1890s, as The Biological Lectures Delivered at the Marine Biological Laboratory in Woods Holl. Whitman encouraged MBL investigators to publish in the first two journals and the lecturers to contribute their lectures to the third. Very quickly, Whitman had helped the United States establish itself as a place where serious scientific research was done in the life sciences.

Most new scientific journals start with an introduction, a statement of mission, or something that tells the reader and potential subscriber or submission author what this publication is about. Not The Biological Bulletin. It began its first issue as The Zöological Bulletin in 1897 (The Biological Bulletin in 1899) with an article by Allis himself. Other investigators from Allis Lake Lab and from the MBL submitted their work, including women scientists who were generally rare among life science researchers.

By 1899 Whitman had moved to Clark University and had realized that the journal needed a broader base. The first issue from the MBL and under the new Biological Bulletin name opened with Maynard M. Metcalf on “Some Relations between Nervous Tissue and Glandular Tissue in the Tunicata.” The issue includes articles by T. H. Morgan, Anne Moore, Garry de N. Hough, and C. W. Hargitt. The front matter says only the title of the journal and that it was edited by the Director and Members of the Staff of the Marine Biological Laboratory, Woods Holl, Massachusetts.

This continued for two years, but in 1900 Whitman and the Ginn Company in Boston that was publishing the journal had disagreements, and finding funding for the journal was a challenge. As a result, the 1900 volume had only three spring issues and 1901 came out only midway through the year. Issues resumed full force in 1902 with the New Era Publishing Company in Lancaster, Pennsylvania (which later became Lancaster Press). This was the real solid start of the journal, with the excellent administrator and Assistant Director of the Marine Biological Laboratory Frank R. Lillie serving as Managing Editor and an appointed editorial board comprised of Whitman, Edwin Grant Conklin, Jacques Loeb, Thomas Hunt Morgan, William Morton Wheeler, and Edmund Beecher Wilson. Lillie remained as managing editor for nearly a quarter of a century and placed the journal, as he did the MBL itself, on a solid intellectual and economic foundation.

In starting again in a more formal way, the MBL staff recognized the need to explain what The Biological Bulletin was meant to be. It was meant to offer an American version of the German Biologisches Centralblatt or Anatomischer Anzeiger, they said. And it was up to American scientists to join the editors and make the enterprise successful.

The journal has remained strong through many different editors and changes in MBL administration, in large part because of a clear and coherent mission that is broad enough and yet focused enough to have remained compelling for more than a century. It has been a challenge at times, when specialty publications have become the norm, to define a valuable niche for a publication that includes all of biology in its mission. The articles have been largely reports of experimental work, often but not always with marine organisms, often concentrating on the areas in which the MBL itself excels, such as neurobiology, development, cell biology, and physiology.

The journal has helped build the MBL library into one of the world’s best biological research centers, since from the beginning, the editors swapped with many other publications and thereby helped all the collections grow. Today, MBL Corporation members can choose to receive a copy of the journal with their membership, and as of 2008, all past issues are now available through open access online.

Sources

  1. Clapp, Pamela. “The History of The Biological Bulletin.” The Biological Bulletin 174 (1988): 1–3.
  2. Marine Biological Laboratory Annual Reports: available in the MBL The Biological Bulletin Vols. 17 and 21–105 at http://www.archive.org/details/biologicalbullet01mari and beginning with 2004 at http://www.mbl.edu/governance/gov_annual_report.html.

From 1886 to 1889 Charles Otis Whitman was director of the Allis Lake Laboratory in Milwaukee, Wisconsin. The lab was established by Edward Phelps Allis, Jr. to provide a place for biological research separate from a university setting and a place where an independent scholar like Allis himself could work. Allis had hired Whitman as an instructor to establish the lab, direct it, and lead a research program there. The lab lasted for eight years, attracted several researchers, and the papers that came out of the lab included a focus on embryology.

Created: 2008-10-24