151 - 175 of 179

Viktor Hamburger to Ludwig von Bertalanffy, September 19, 1952

Confirmation of Bertalanffy's lecture on October 31, 1952

Created: 1952-09-19

Viktor Hamburger to Ludwig von Bertalanffy, July 31, 1952

Invitation to Bertalanffy to give a lecture at Washington University with funds from the Sigma Xi Society

Created: 1952-07-31

Viktor Hamburger to Russell J. Blattner, February 21, 1956

Hamburger grants Blattner permission to cite his study on influenza virus in chick embryos

Created: 1956-02-21

Viktor Hamburger to Jean Brachet, May 25, 1946

Updates on arrangements about Jean Wiame's visit to the St. Louis; Also that Holtfreter had obtained a US visa to go to University of Rochester.

Created: 1946-05-25

Viktor Hamburger to Donald Bucklin, March 10, 1969

The grant of permission for use of Hamburger's illustration.

Created: 1969-03-10

Viktor Hamburger to Marion Bunch, April 10, 1969

Inquiries about joining the gatherings for Bunch's retirement from the Charimanship of Psychology, and recollections of the friendship.

Created: 1969-04-10

Viktor Hamburger to Joseph Altman, February 26, 1971

Social Security number redacted.

Created: 1971-02-26

Roger Arliner Young Application for Research Accommodations, 1936

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1936

Roger Arliner Young Application for Research Accommodations, 1938

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1938

Roger Arliner Young Application for Research Accommodations, 1937

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1937

Roger Arliner Young Application for Research Accommodations, 1935

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1935

Roger Arliner Young Application for Research Accommodations, 1932

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1932

Roger Arliner Young Application for Research Accommodations, 1933

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1933

Roger Arliner Young Application for Research Accommodations, 1931

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1931

Roger Arliner Young Application for Research Accommodations, 1934

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1934

Rachel Carson Application for Research Accommodations, 1932

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1932

Roger Arliner Young Application for Research Accommodations, 1927

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1927

Roger Arliner Young Application for Research Accommodations, 1928

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1928

Roger Arliner Young Application for Research Accommodations, 1929

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1929

Rachel Carson Application for Research Accommodations, 1929

Application for research accommodations at the Marine Biological Laboratory in Woods Hole, MA. Includes general description of research and dates.

Created: 1929

Ernest Everett Just (1883-1941)

Ernest Everett Just

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the “fertilizing” theory of Frank R. Lillie and served as an antagonist to Jacques Loeb’s work with artificial parthenogenesis. Just’s many experiments with marine invertebrates showed that the egg surface, or ectoplasm, plays an important role in the fertilization and development of eggs.

Just was born in Charleston, South Carolina, on 14 August 1883 to Charles Frazier Just Jr. and Mary Matthew Just. His father died in 1887 and soon after the Just family moved to James Island, off the coast of South Carolina. His early education consisted of attending the small school that his mother founded and directed. Just left James Island at the age of twelve to attend the Colored Normal Industrial Agricultural and Mechanics College at Orangeburg (now South Carolina State College). In 1899 Just graduated with a Licentiate of Instruction, meaning that he was certified to teach in any black school in South Carolina. He was only fifteen years old.

Teaching did not appeal to the teenager so he traveled north, picking up odd jobs along the way until he reached Kimball Union Academy in Meriden, New Hampshire. Just finished a classical course of study in three years, during which time his mother died. The young college graduate was advised by friends and teachers to attend Dartmouth College which he decided to do. At Dartmouth, Just studied biology, history, literature, and the classics. He graduated from Dartmouth in 1907, the only “magna cum laude” in his class, with an AB degree and joined the English faculty at Howard University, Washington, DC in the fall of that same year. He was asked to take over the biology department and teach physiology in 1910, in addition to his English teaching duties. Soon after, Just became the first head of the new Department of Zoology and gave up teaching English courses.

Through a Dartmouth contact, Just communicated with Lillie at the University of Chicago about a post-graduate degree in biology. Lillie directed Just to begin research in 1909 at Woods Hole and to take courses at the University of Chicago. Work at the marine station quickly turned into a research assistantship, working side-by-side with Lillie. All of this was done in addition to maintaining a full-time teaching position at Howard. After obtaining his PhD, Just returned annually to Woods Hole as an independent researcher.

Just focused his interests on marine invertebrate eggs, both in the laboratory and in their natural setting. Because of his tacit knowledge of how marine invertebrates reproduced in oceans and estuaries, Just was able to closely match his laboratory environment to that of the organism’s natural environment. In 1912, Just’s first paper, “The Relation of the First Cleavage Plane to the Entrance Point of the Sperm.” was published in the Biological Bulletin. Just showed that eggs of the marine worm (Nereis) cleave in different planes depending on the sperm’s point of entry. To Just, the egg’s surface was an important and robust factor in the fertilization process. By showing that sperm had an equal probability of entering the egg at any point on the egg’s surface, and that the direction of cleavage depended on the arbitrary point of entry of sperm, and not some predetermined cleavage plane, Just made a dent in preformationist theory. It was also during this time that he married Ethel Highwarden in 1912 and met Jacques Loeb while Loeb was at the Rockefeller Institute for Medical Research. Similar research interests and Loeb’s stand on social equality made the two embryologists fast, but not longstanding friends. In 1915 Just was the first to receive the Spingarn Medal, presented annually to the African-American who performs the greatest service to his or her race. This was followed by the University of Chicago awarding Just his PhD degree in experimental embryology in 1916.

During 1919 and 1920, Just published four papers in the Biological Bulletin, all focusing on his work with the sand dollar Echinarachnius parma. In one set of experiments Just measured the elevation of the egg membrane at sperm contact and the time that it took for the membrane to be penetrated by a sperm. He observed that the sperm was pulled into the egg rather than the commonly held view that it actively bored its way into the egg. Just also documented a “wave of instability” that moved from the sperm’s entry point to the opposite side of the egg. Since then, embryologists have proven that such an instability wave is a wave of cortical granule exocytosis that forms the fertilization envelope. Just also saw that the wave was associated with an immediate blocking of any further sperm penetrability of the egg.

In 1920, while continuing to teach at Howard, Just obtained a ten-year research fellowship from Julius Rosenwald through the National Research Council. He wasted no time in returning to his work at Woods Hole where he continued to study the process of fertilization with results that strengthened Lillie’s work and questioned Loeb’s idea of “superficial cytolysis.” According to Loeb’s studies, egg development could be initiated by exposing eggs to butyric acid. Development was then immediately followed by the release of lysine, Loeb’s cytolytic agent, to break down the egg cortex. Just showed that putting eggs in butyric acid for a short period of time actually slowed cytolysis rather than sped it up. Just was able to prove that the cytolytic effect of the butyric acid was due to overexposure of the eggs to the acid and nothing more. He went even further in dismissing Loeb’s experimental findings on artificial parthenogenesis, attacking Loeb’s method of record-keeping and his apparent failure to maintain experimental conditions to mimic his experimental organisms’ natural environments.

The friendship that Just and Loeb had forged together at Woods Hole quickly vanished. Their disagreements played out for many years, with Loeb providing negative evaluations of Just to the Rockefeller Institute and the Carnegie Foundation. Every time Just tried to obtain grant money, Loeb’s evaluations seemed to rise up and quell any grant award.

In 1929 Just made his first trip to Europe and worked at Anton Dohrn’s Stazione Zoologica in Naples. For six months he experimented with sea urchins (Paracentrotus lividus and Echinus microtuberculatus) to see how these organisms develop and to continue testing Lillie’s “fertilizin” theory of fertilization. Around 1906 Lillie had hypothesized that eggs release a substance that he coined fertilizin. Upon contact with spermatozoa, said Lillie, fertilizin causes sperm to attach to it. Lillie believed that fertilizin molecules served as receptors on the egg’s surface. With receptors for egg and sperm surfaces, the molecule helped to “agglutinate” egg and sperm together.

In 1930 Just was invited to the Kaiser Wilhelm Institute in Berlin where he continued his studies of the ectoplasm with other species, including Amoeba. Just strove to show the importance of ectoplasm in initiation of development. While in Europe he published three articles on the role of ectoplasm: “ Die Rolle des kortikalen Cytoplasmas bei vitalen Erscheinungen” (“The Role of Cortical Cytoplasmin Vital Phenomena”) in Naturwissenschaften (1931) and “On Origin of Mutations” (1932) and “Cortical Cytoplasm and Evolution” (1933), both published in the American Naturalist. All three articles pointed to Just’s view that ectoplasm is necessary for fertilization to occur.

With little hope of ever being able to teach anywhere but a black college, and his continued failure to secure research funds, Just went to Europe in 1938 with the intent of leaving Howard and finishing out his research career on a new continent. In 1939 he published two books: Basic Methods for Experiments on Eggs of Marine Animals and The Biology of the Cell Surface. Both books reflected Just’s holistic view of eggs and embryos: that is, eggs are to be taken seriously in their own right rather than seen simply as tools to manipulate in order to prove a theory. While Just’s experiments may have been simple, he was an intense perfectionist when it came to laboratory procedure. His ability to keep laboratory environments similar to actual marine environments aided in the integrity of his research. It also led to his life-long criticism of experimental embryologists who failed to appreciate his tacit knowledge about inducing marine invertebrate reproduction. To Just, too many embryologists were busy taking eggs out of natural environments and subjecting them to unnatural manipulations while ignoring the importance of the eggs’ environment as an important factor in development. In The Biology of the Cell Surface, Just also continued his attack on the role of genes in development. He remained adamant that cytoplasm was the key to development and not the nucleus. This countered the growing enthusiasm by geneticists who held the idea that the nucleus controlled fertilization and development.

The Nazi invasion of France in 1940 forced Just to return to the US and Howard University, one of the few institutions at the time that would hire a black scientist. His attempt to recareer again in the United States was short-lived however. Just died of pancreatic cancer on 27 October 1941.

Sources

  1. Byrnes, Malcolm W. “Ernest Everett Just.” New Dictionary of Scientific Biography 4: 66– 70.
  2. Byrnes, Malcolm W., and William R. Eckberg. “Ernest Everett Just (1883-1941): An Early Ecological Developmental Biologist,” Developmental Biology 296 (2006): 1– 11.
  3. Gilbert, Scott F. “Cellular Politics: Ernest Everett Just, Richard B. Goldschmidt, and the Attempt to Reconcile Embryology and Genetics.” In The American Development of Biology, eds. Ronald Rainger, Keith R. Benson, and Jane Maienschein, 311–42. Philadelphia, PA: University of Pennsylvania Press, 1988.
  4. Gould, Stephen Jay. “Just in the Middle: A Solution to the Mechanist-Vitalist Controversy.” In The Flamingo’s Smile: Reflections in Natural History, 337-391. New York: W. W. Norton, 1985.
  5. Just, Ernest E., “The Relation of the First Cleavage Plane at the Entrance Point of the Sperm,” Biological Bulletin 22 (1912): 239–52.
  6. Lillie, Frank R. “Obituary of Ernest Everett,” Science 95 (1942): 10–11.
  7. Manning, Kenneth J. Black Apollo of Science: The Life of Ernest Everett Just. New York: Oxford University Press, 1983.
  8. Pauly, Philip J. Controlling Life: Jacques Loeb and the Engineering Ideal in Biology. New York: Oxford University Press, 1987.

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served as an antagonist to Jacques Loeb's work with artificial parthenogenesis.

Created: 2010-06-16

The Biological Bulletin

The Biological Bulletin

From 1886 to 1889 Charles Otis Whitman was director of the Allis Lake Laboratory in Milwaukee, Wisconsin. The lab was established by Edward Phelps Allis, Jr. to provide a place for biological research separate from a university setting and a place where an independent scholar like Allis himself could work. Allis had hired Whitman as an instructor to establish the lab, direct it, and lead a research program there. The lab lasted for eight years, attracted several researchers, and the papers that came out of the lab included a focus on embryology. This raised the question of where to publish the work since there were few life science journals being published in the United States , which led Whitman to propose a new journal.

With Allis’s support, Whitman started the Journal of Morphology in 1897 for long, almost monographic articles complete with elaborate illustrations. In addition, Whitman and his student William Morton Wheeler (who had also worked at the Allis Lake Laboratory) started a second journal for shorter articles and reports that could quickly appear in print. This was seen as a companion for the Journal of Morphology and was intended to embrace the entire field of animal biology. At first they called it the Zöological Bulletin, but after the first two years of publication in 1898 and 1899, the title changed to The Biological Bulletin. This also fit with the fact that the journal started out independently and then in 1890 became affiliated informally with the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, of which Whitman served as first director starting in 1888. The MBL also published its series of evening lectures throughout the 1890s, as The Biological Lectures Delivered at the Marine Biological Laboratory in Woods Holl. Whitman encouraged MBL investigators to publish in the first two journals and the lecturers to contribute their lectures to the third. Very quickly, Whitman had helped the United States establish itself as a place where serious scientific research was done in the life sciences.

Most new scientific journals start with an introduction, a statement of mission, or something that tells the reader and potential subscriber or submission author what this publication is about. Not The Biological Bulletin. It began its first issue as The Zöological Bulletin in 1897 (The Biological Bulletin in 1899) with an article by Allis himself. Other investigators from Allis Lake Lab and from the MBL submitted their work, including women scientists who were generally rare among life science researchers.

By 1899 Whitman had moved to Clark University and had realized that the journal needed a broader base. The first issue from the MBL and under the new Biological Bulletin name opened with Maynard M. Metcalf on “Some Relations between Nervous Tissue and Glandular Tissue in the Tunicata.” The issue includes articles by T. H. Morgan, Anne Moore, Garry de N. Hough, and C. W. Hargitt. The front matter says only the title of the journal and that it was edited by the Director and Members of the Staff of the Marine Biological Laboratory, Woods Holl, Massachusetts.

This continued for two years, but in 1900 Whitman and the Ginn Company in Boston that was publishing the journal had disagreements, and finding funding for the journal was a challenge. As a result, the 1900 volume had only three spring issues and 1901 came out only midway through the year. Issues resumed full force in 1902 with the New Era Publishing Company in Lancaster, Pennsylvania (which later became Lancaster Press). This was the real solid start of the journal, with the excellent administrator and Assistant Director of the Marine Biological Laboratory Frank R. Lillie serving as Managing Editor and an appointed editorial board comprised of Whitman, Edwin Grant Conklin, Jacques Loeb, Thomas Hunt Morgan, William Morton Wheeler, and Edmund Beecher Wilson. Lillie remained as managing editor for nearly a quarter of a century and placed the journal, as he did the MBL itself, on a solid intellectual and economic foundation.

In starting again in a more formal way, the MBL staff recognized the need to explain what The Biological Bulletin was meant to be. It was meant to offer an American version of the German Biologisches Centralblatt or Anatomischer Anzeiger, they said. And it was up to American scientists to join the editors and make the enterprise successful.

The journal has remained strong through many different editors and changes in MBL administration, in large part because of a clear and coherent mission that is broad enough and yet focused enough to have remained compelling for more than a century. It has been a challenge at times, when specialty publications have become the norm, to define a valuable niche for a publication that includes all of biology in its mission. The articles have been largely reports of experimental work, often but not always with marine organisms, often concentrating on the areas in which the MBL itself excels, such as neurobiology, development, cell biology, and physiology.

The journal has helped build the MBL library into one of the world’s best biological research centers, since from the beginning, the editors swapped with many other publications and thereby helped all the collections grow. Today, MBL Corporation members can choose to receive a copy of the journal with their membership, and as of 2008, all past issues are now available through open access online.

Sources

  1. Clapp, Pamela. “The History of The Biological Bulletin.” The Biological Bulletin 174 (1988): 1–3.
  2. Marine Biological Laboratory Annual Reports: available in the MBL The Biological Bulletin Vols. 17 and 21–105 at http://www.archive.org/details/biologicalbullet01mari and beginning with 2004 at http://www.mbl.edu/governance/gov_annual_report.html.

From 1886 to 1889 Charles Otis Whitman was director of the Allis Lake Laboratory in Milwaukee, Wisconsin. The lab was established by Edward Phelps Allis, Jr. to provide a place for biological research separate from a university setting and a place where an independent scholar like Allis himself could work. Allis had hired Whitman as an instructor to establish the lab, direct it, and lead a research program there. The lab lasted for eight years, attracted several researchers, and the papers that came out of the lab included a focus on embryology.

Created: 2008-10-24

Biological Lectures Delivered at the Marine Biological Laboratory in Woods Hole

<i>Biological Lectures Delivered at the Marine Biological Laboratory in Woods Hole</i>

The Marine Biological Laboratory in Woods Hole, Massachusetts, began in 1888 with one building housing researchers upstairs and students in a shared lab and lecture space downstairs. For the first two years, instruction took the form of general lectures covering a range of topics in zoology. In addition, the trustees offered some public lectures in Boston to raise funds for the lab.

In 1890 the lab began a new tradition that has continued every year since. They began a series of evening lectures intended to be accessible to a wide audience of those interested in biology. Eventually these became known as the Friday Evening Lectures, and since the opening of the auditorium in the Lillie Building in 1924 (named after second Director Frank Rattray Lillie) the lectures have been held there. Every Friday evening during the summer season, the community of scientists, students, and members of the public interested in science stream into the auditorium for their weekly lecture, then move to the reception held afterward. These lectures are a high point of the MBL’s summer of science.

Throughout the 1890s Charles Otis Whitman, as the MBL’s first Director, persuaded the lecturers to write up their lectures and publish them. He organized the lectures of 1890 and then 1893–1899 into volumes that appeared as a serial that both showed the larger world what the MBL offered and brought leading scientists to the lab to participate in the lectures and their publications.

The Biological Lectures Delivered at the Marine Biological Laboratory in Woods Holl provides a useful insight into what were thought to be the driving questions of the day and what were seen as productive ways of approaching them. Some years reveal a general distribution of topics, while other years are much more focused.

For an introduction to the lectures, see Jane Maienschein’s introduction to Defining Biology. This volume offers a sampling of the lectures and also a complete list of lectures published during the 1890s. The MBL Annual Reports provide a list of every year’s lecturers and demonstrate the shifts in emphasis over time, as well as changing trends in biology.

Sources

  1. Maienschein, Jane, ed. Defining Biology: Lectures from the 1890s. Cambridge: Harvard University Press, 1986.
  2. Marine Biological Laboratory Annual Reports: available in the MBL Biological Bulletin Vols. 17 and 21–105 at http://www.archive.org/details/biologicalbullet01mari and beginning with 2004 at http://www.mbl.edu/governance/gov_annual_report.html.

The Marine Biological Laboratory in Woods Hole, Massachusetts, began in 1888 with one building housing researchers upstairs and students in a shared lab and lecture space downstairs. For the first two years, instruction took the form of general lectures covering a range of topics in zoology. In addition, the trustees offered some public lectures in Boston to raise funds for the lab.

Created: 2008-10-24

James David Ebert (1921-2001)

James David Ebert (1921-2001)

James David Ebert studied the developmental processes of chicks and of viruses in the US during the twentieth century. He also helped build and grow many research institutions, such as the Department of Embryology in the Carnegie Institution of Washington in Baltimore, Maryland and the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts. When few biologists studied the biochemistry of embryos, Ebert built programs and courses around the foci of biochemistry and genetics, especially with regards to embryology. He eventually directed the MBL's Embryology Course, and later, the MBL itself.

Ebert was born on 11 December 1921 in the town of Bentleyville, Pennsylvania. He attended public schools while growing up and then graduated from Washington and Jefferson College in Washington, Pennsylvania in 1942. Not long after graduation he joined the United States Navy and eventually became a lieutenant. Ebert was stationed on a destroyer in the Pacific Ocean that was attacked by a kamikaze pilot. The destroyer sank and Ebert spent twenty-four hours in the ocean until being rescued. Afterwards, as a biologist, Ebert befriended and trained several Japanese developmental biologists.

In 1946 Ebert began working towards his PhD in developmental biology under the instruction of Benjamin Willier at the Johns Hopkins University in Baltimore, Maryland. In the same year he married Alma Goodwin, who was a Women Accepted for Volunteer Emergency during the war. Ebert received his PhD in 1950 and immediately became a member of the faculty at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. After one year at MIT, Ebert moved to Indiana University in Bloomington, Indiana. Ebert became an associate professor of zoology by 1955, and he had started a program of experimental embryology. He studied chick embryos and the processes by which the protein make-up of the embryos changed throughout development.

Six years after receiving his PhD, Ebert became the director of the Carnegie Institution of Washington's Department of Embryology, in Baltimore, Maryland. Prior to Ebert's term as director, the department had had three other directors. The Institution's president, Caryl Haskins, had contemplated closing the department and starting something new. However, with some persuasion from Willier, Haskins spoke with Ebert and decided to give him the opportunity to run the department. Ebert and Haskins agreed that the department needed to focus on the study of genes and their regulation as well as the ways cells influence one another. Haskins said that Ebert's youth and enthusiastic personality made Haskins believe that Ebert would provide a fresh perspective to the department.

Ebert argued that it was his job to recognize and to recruit new talent and then support them in their work. He stressed the use of biochemistry and genetics, which in the 1960s blended together to form molecular biology. During this time, Ebert started to study the relationship between muscle cell differentiation and the propensity to infection in the Rous sarcoma virus.

While still director of the Carnegie embryology department, in 1970 Ebert also became the president and nonresident director of the Marine Biological Laboratory (MBL) at Woods Hole. At the MBL he researched, with Keiko Ozato, the response of murine lymphocytes to mitogens.

In 1977 Ebert ended his term at the Carnegie Department of Embryology, but he remained the director of the MBL. From 1978 until 1987, Ebert lived in Washington, D.C., and he was the president of the whole Carnegie Institution of Washington. As the institution's president, he made the decision to help build a large optical telescope in Chile at Las Campanas Observatory, and he worked towards the creation of a common campus for both Carnegie departments in Washington.

Ebert remained involved with scientific institutions for the rest of his life. When leaving one institution, he found another one to join. He retired from the Carnegie Institution in 1987 and became the president of the Chesapeake Bay Institute at the Johns Hopkins University, where he was a professor of biology for six years. Ebert was elected to many societies including the National Academy of Sciences, the American Philosophical Society, the American Academy of Arts and Sciences, and the Institute of Medicine. He was the vice president of the National Academy of Sciences from 1981 through 1993 and he also chaired its Government-University-Industry Research Roundtable from 1987 through 1993. His colleagues elected him as president of the Society for the Study of Development and Growth, the American Institute of Biological Sciences, and the American Society of Zoologists.

In retirement, Ebert and his wife Alma spent half of each year in Woods Hole and at the MBL. Ebert and Alma died on 22 May 2001 in an automobile accident while en route to Woods Hole.

Sources

  1. DeHaan, Robert L., and James D. Ebert. "Morphogenesis." Annual Review of Physiology 26 (1964): 15–46.
  2. Ebert, James D. "An analysis of the effects of anti-organ sera on the development, in vitro, of the early chick blastoderm." Journal of Experimental Zoology 115 (1950): 351–77.
  3. Ebert, James D. "An analysis of the synthesis and distribution of the contractile protein, myosin, in the development of the heart." Proceedings of the National Academy of Sciences 39 (1953): 333–44.
  4. Ebert, James D. "The effects of chorioallantoic transplants of adult chicken tissues on homologous tissues of the host chick embryo." Proceedings of the National Academy of Sciences 40 (1954): 337–47.
  5. Ebert, James D. "The formation of muscle and muscle-like elements in the chorioallantoic membrane following inoculation of a mixture of cardiac microsomes and Rous sarcoma virus." Journal of Experimental Zoology 142 (1959): 587–621.
  6. Ebert, James D., and Ian M. Sussex. Interacting Systems in Development. New York: Holt, Rinehart and Winston, 1970.
  7. Ebert, James D., and Fred H. Wilt. "Animal Viruses and Embryos." The Quarterly Review of Biology 35 (1960): 261–312.
  8. Obituaries. "Jim and Alma Ebert." Marine Biological Laboratory. http://www.mbl.edu/news/obit/obit_ebert.html (Accessed December 8, 2007).
  9. Ozato, Keiko, William H. Adler, and James D. Ebert. "Synergism of bacterial lipopolysaccharides and concanavalin A in the activation of thymic lymphocytes." Cellular Immunology 17 (1975): 532–41.
  10. Singer, Maxine. "James David Ebert." Proceedings of the American Philosophical Society 148 (2004): 124–27.

James David Ebert studied the developmental processes of chicks and of viruses in the US during the twentieth century. He also helped build and grow many research institutions, such as the Department of Embryology in the Carnegie Institution of Washington in Baltimore, Maryland and the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts. When few biologists studied the biochemistry of embryos, Ebert built programs and courses around the foci of biochemistry and genetics, especially with regards to embryology.

Created: 2008-09-12

Jane Maienschein (1950- )

Jane Maienschein

Thumbnail portrait

Jane Maienschein is the daughter of Joyce Kylander and Fred Maienschein, and was born in Oak Ridge, Tennessee, on 23 September 1950. She attended MIT as a freshman and then transferred to Yale University in 1969 when Yale decided to admit women undergraduates. In 1972 she graduated with an honors degree in History, the Arts, and Letters having written a thesis on the history of science. She then attended Indiana University and studied with historian of embryology Frederick B. Churchill, took courses with embryologist Rudolf Raff, and learned how to do embryological laboratory research with Robert Briggs. She received her MA in 1976 and a PhD in 1978, with a pre-doctoral Fellowship at the Smithsonian to study the history of microscopes and microscopy, and an NSF-funded dissertation improvement visit to the Marine Biological Laboratory (MBL) to reproduce old embryological experiments and soak up the history and resources of the MBL Library and labs. Maienschein’s scholarly research focuses on the history and philosophy of developmental biology.

In graduate school Briggs helped Maienschein reproduce historical experiments using the dissertation study of Ross Granville Harrison’s 1907 experiments on nerve fiber development. Harrison had asked whether the neuroblast cell (which we would now call a neural stem cell) can reach out and develop its fiber by protoplasmic outgrowth or whether the cell required a pre-established bridge, as many of his contemporaries argued must be the case. Harrison carried out the first ever tissue culture experiment, in which he got the neuroblast cells to grow when transplanted into an artificial medium of frog lymph. Briggs and Maienschein discovered that carrying out the experiment with the techniques Harrison described led to lots of nice bacterial and other unidentified cultures, but not nerve cells. Retracing Harrison’s steps revealed that he had taken advantage of being temporarily housed near the bacteriologists at Yale University and had used more sophisticated aseptic techniques than he described.

This work led Maienschein to an analysis of the role of the details of scientific practices and the value of carrying out “practical history,” as Edwin Clarke called it. She has also asked questions about the role of experiments in settling (or failing to settle) issues of theoretical debate. Her work in history of embryology has concentrated especially on the late nineteenth and into the twentieth century, including work done at the Marine Biological Laboratory in Woods Hole, Massachusetts, and on issues of morphogenesis and differentiation related to cell division. This research has led her to study stem cell research and regenerative medicine.

Maienschein is also a dedicated teacher who has received multiple awards, including the Arizona State University Parents Association Professor of the Year Chair, Regents’ Professorship, and President’s Professorship. In addition, she received the History of Science Society’s Joseph H. Hazen Education Prize Award. During the 105th United States Congressional session, in 1997 and 1998, she served as senior science advisor to Congressman Matt Salmon, who served on the Science Committee. She took a group of undergraduates to Washington, which led to their paper presentation at the 150th meeting of the American Association for the Advancement of Science, and that led to an invitation to write an editorial for Science. The students’ essay on “Scientific Literacy” remains the only publication in Science by undergraduates, and it led to a longer peer-reviewed article in Science Communication.

This personal exposure to the political context of science also led Maienschein to research reflecting more seriously on the social, political, and legal contexts of scientific research. Most productively, this has resulted in collaborative publications and projects with bioethicist Jason Scott Robert and Rachel Ankeny.

Maienschein served as the first president for the International Society for History, Philosophy, and Social Studies of Biology (“Ishkabibble”) in 1989–1991, president of the History of Science Society in 2008 and 2009, and in numerous other administrative rolls. She is Director of the Embryo Project, along with Manfred Laubichler.

Sources

  1. Arizona State University. http://www.public.asu.edu/~atjvm/ (Accessed October 24, 2008).
  2. Arizona State University Libraries. http://knet.asu.edu/research/?getObject=asulib:41285 (Accessed October 24, 2008).
  3. School of Life Sciences, Arizona State University. http://sols.asu.edu/people/faculty/jmaienschein.php (Accessed October 24, 2008).

Jane Maienschein is the daughter of Joyce Kylander and Fred Maienschein, and was born in Oak Ridge, Tennessee, on 23 September 1950. She attended MIT as a freshman and then transferred to Yale University in 1969 when Yale decided to admit women undergraduates. In 1972 she graduated with an honors degree in History, the Arts, and Letters having written a thesis on the history of science. She then attended Indiana University and studied with historian of embryology Frederick B.

Created: 2008-10-24